
GARCH Toolbox™ 2
User’s Guide



How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

GARCH Toolbox™ User’s Guide

© COPYRIGHT 1999–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History
July 1999 First printing New for Version 1.0 (Release 11)
November 2000 Online only Revised for Version 1.0.1 (Release 12)
July 2002 Online only Revised for Version 1.0.2 (Release 13)
November 2002 Second printing Revised for Version 2.0 (Release 13+)
June 2004 Online only Minor revision for Version 2.0.1 (Release 14)
August 2004 Third printing Revised for Version 2.0.1
September 2005 Online only Revised for Version 2.1 (Release 14SP3)
March 2006 Fourth printing Revised for Version 2.2 (Release 2006a)
September 2006 Online only Revised for Version 2.3 (Release 2006b)
March 2007 Online only Revised for Version 2.3.1 (Release 2007a)
September 2007 Online only Revised for Version 2.3.2 (Release 2007b)
March 2008 Online only Revised for Version 2.4 (Release 2008a)





Contents

Getting Started

1
Product Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

What Is GARCH? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
About GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Modeling with GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Limitations of GARCH Modeling . . . . . . . . . . . . . . . . . . . . . 1-4

Expected Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

Technical Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Array and Vector Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Vector Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Time-Series Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Conditional vs. Unconditional . . . . . . . . . . . . . . . . . . . . . . . 1-8
Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Prices, Returns, and Compounding . . . . . . . . . . . . . . . . . . . 1-8
Stationary and Non-stationary Time Series . . . . . . . . . . . . 1-9

Example Financial Time-Series Data Sets . . . . . . . . . . . . 1-12
About the Examples in this Documentation . . . . . . . . . . . . 1-12
DEM2GBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
NASDAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
NYSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
SDE_Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14

Introduction

2
About Financial Time Series Modeling . . . . . . . . . . . . . . 2-2

Characteristics of Financial Time Series . . . . . . . . . . . . . . . 2-2
Forecasting and Correlation of Financial Time Series . . . . 2-5

v



Serial Dependence in Innovations . . . . . . . . . . . . . . . . . . . . 2-5

Conditional Mean and Variance Models . . . . . . . . . . . . . . 2-7
About Conditional Mean and Variance Models . . . . . . . . . . 2-7
Conditional Mean Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Conditional Variance Models . . . . . . . . . . . . . . . . . . . . . . . . 2-10

The Default Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

Primary Toolbox Functions . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

Example: Analysis and Estimation Using the Default
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Pre-Estimation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
Post-Estimation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27

GARCH Specification Structures

3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Associating Model Equation Variables with
Corresponding Parameters in Specification
Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
About Specification Structure Parameter Names . . . . . . . . 3-4
Conditional Mean Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Conditional Variance Models . . . . . . . . . . . . . . . . . . . . . . . . 3-5

Example: Interpreting Specification Structures . . . . . . 3-6

Working with Specification Structures . . . . . . . . . . . . . . 3-9
Creating Specification Structures . . . . . . . . . . . . . . . . . . . . 3-9
Modifying Specification Structures . . . . . . . . . . . . . . . . . . . 3-11
Retrieving Specification Structure Values . . . . . . . . . . . . . . 3-12

vi Contents



Simulation of GARCH Models

4
Simulating Single and Multiple Paths . . . . . . . . . . . . . . . 4-2

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Preparing the Example Data . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Simulating Single Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Simulating Multiple Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

Working with Presample Data . . . . . . . . . . . . . . . . . . . . . . 4-7
About Presample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Automatically Generating Presample Data . . . . . . . . . . . . 4-7
Running Simulations With User-Specified Presample

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

Monte Carlo Simulation of Stochastic
Differential Equations

5
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Trials vs. Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
NTRIALS, NPERIODS, and NSTEPS . . . . . . . . . . . . . . . . . 5-4

Behavior and Syntax of SDE Objects . . . . . . . . . . . . . . . . 5-5
Relationship Between SDE Models and Objects . . . . . . . . . 5-5
Displaying Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Assigning and Referencing Object Parameters . . . . . . . . . . 5-6
Constructing and Evaluating Models . . . . . . . . . . . . . . . . . 5-6

Parametric Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
General Parametric Specification . . . . . . . . . . . . . . . . . . . . 5-7
General SDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Drift and Diffusion Specifications . . . . . . . . . . . . . . . . . . . . 5-8

Using SDE Objects to Create Models . . . . . . . . . . . . . . . . 5-11
SDE Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11

vii



Creating Base SDE Objects . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
Creating Drift and Diffusion Objects . . . . . . . . . . . . . . . . . . 5-16
Creating Stochastic Differential Equations from Drift and

Diffusion Objects (SDEDDO) . . . . . . . . . . . . . . . . . . . . . . 5-19
Creating Stochastic Differential Equations from Linear

Drift (SDELD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20
Creating Brownian Motion (BM) Models . . . . . . . . . . . . . . . 5-21
Creating Constant Elasticity of Variance (CEV) Models . . 5-22
Creating Geometric Brownian Motion (GBM) Models . . . . 5-23
Creating Stochastic Differential Equations from

Mean-Reverting Drift (SDEMRD) . . . . . . . . . . . . . . . . . . 5-24
Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
Creating Hull-White/Vasicek (HWV) Gaussian Diffusion

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-26

Solving Problems with SDE Models . . . . . . . . . . . . . . . . . 5-29
Implementing Multidimensional Equity Market Models . . 5-29
Stochastic Interpolation and the Brownian Bridge . . . . . . . 5-42
Inducing Dependence and Correlation . . . . . . . . . . . . . . . . . 5-48
Incorporating Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . 5-51
End-of-Period Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-57
User-Specified Random Number Generation: Stratified

Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-63

Creating User-Specified Functions . . . . . . . . . . . . . . . . . . 5-69
Evaluating Object Parameters, Noise, and End-of-Period

Processing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-69
Random Number Generation Functions vs. End-of-Period

Processing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-70

Managing Memory, Performance, and Solution
Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-72
Managing Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-72
Enhancing Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-73
Optimizing Accuracy of Solutions . . . . . . . . . . . . . . . . . . . . 5-74

viii Contents



Estimation

6
Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 6-2

Initial Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . 6-4
User-Specified Initial Estimates . . . . . . . . . . . . . . . . . . . . . 6-4
Automatically Generated Initial Estimates . . . . . . . . . . . . 6-6
Parameter Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10

Presample Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
Calculating Presample Data . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
User-Specified Presample Observations . . . . . . . . . . . . . . . 6-12
Automatically Generated Presample Observations . . . . . . 6-13

Termination Criteria and Optimization Results . . . . . . 6-15
Optimization Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15
MaxIter and MaxFunEvals . . . . . . . . . . . . . . . . . . . . . . . . . 6-15
TolCon, TolFun, and TolX . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16
Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17
Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17
Constraint Violation Tolerance . . . . . . . . . . . . . . . . . . . . . . 6-18

Examples: Specifying Your Own Presample Data to
Estimate ARMA(R,M) Parameters . . . . . . . . . . . . . . . . . 6-21
Specifying Presample Data . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21
Presample Data and Transient Effects . . . . . . . . . . . . . . . . 6-24
Alternative Technique for Estimating ARMA(R,M)

Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30
Active Lower Bound Constraint . . . . . . . . . . . . . . . . . . . . . . 6-30
Determining Convergence Status . . . . . . . . . . . . . . . . . . . . 6-34

Forecasting the Conditional Mean and Standard
Deviation of Return Series

7
Minimum Mean Square Error Forecasting . . . . . . . . . . . 7-2

About the Forecasting Engine . . . . . . . . . . . . . . . . . . . . . . . 7-2

ix



Conditional Standard Deviations of Future Innovations . . 7-2
Conditional Mean Forecasting of the Return Series . . . . . . 7-3
MMSE Volatility Forecasting of Returns . . . . . . . . . . . . . . . 7-3
RMSE Associated with Conditional Mean Forecasts . . . . . 7-4

Generating Presample Observations . . . . . . . . . . . . . . . . 7-6

Asymptotic Behavior for Long-Range Forecast
Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7

Examples: Computing Forecasts . . . . . . . . . . . . . . . . . . . . 7-9
Forecasting Using garchpred . . . . . . . . . . . . . . . . . . . . . . . . 7-9
Volatility Forecasting over Multiple Periods . . . . . . . . . . . . 7-12
Forecasting with Multiple Realizations . . . . . . . . . . . . . . . . 7-15

Regression Components

8
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

Example: Incorporating a Regression Model into an
Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
Fitting a Model to a Simulated Return Series . . . . . . . . . . . 8-3
Fitting a Regression Model to the Same Return Series . . . 8-5

Simulation and Inference Using a Regression
Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8

Forecasting Using a Regression Component . . . . . . . . . . 8-9
Using Forecasted Explanatory Data . . . . . . . . . . . . . . . . . . 8-9
Generating Forecasted Explanatory Data . . . . . . . . . . . . . . 8-10

Ordinary Least Squares Regression . . . . . . . . . . . . . . . . . 8-11

Regression in a Monte Carlo Framework . . . . . . . . . . . . 8-13

x Contents



Univariate Unit Root Tests

9
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2

Critical Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
Serial Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2

Dickey-Fuller Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
Definitions of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
dfARTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
dfARDTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
dfTSTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5

Phillips-Perron Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
Definitions of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
ppARTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
ppARDTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
ppTSTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7

How to Test for Unit Roots: Inputs and Outputs . . . . . . 9-8
About the Common Interface . . . . . . . . . . . . . . . . . . . . . . . . 9-8
Lags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8
Significance Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9
TestType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10

Interpretation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11

Examples: Unit Root Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13
About These Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13
Testing GDP by OLS Regression with a Stationary

Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14
Testing T-Bill Rate by OLS Regression with a Drift

Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17

xi



Model Selection and Analysis

10
Using The Autocorrelation and Partial Autocorrelation

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

Likelihood Ratio Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Testing Support for a GARCH(2,1) Model . . . . . . . . . . . . . . 10-3

Akaike and Bayesian Information Criteria . . . . . . . . . . . 10-6

Equality Constraints and Parameter Significance . . . . 10-9
Specification Structure Fix Fields . . . . . . . . . . . . . . . . . . . . 10-9
Comparing the GARCH (1, 1) Estimation Results with the

GARCH (2,1) Model Fit to the NASDAQ Returns . . . . . 10-11

Equality Constraints and Initial Parameter
Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-14
About this Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-14
Complete Model Specification . . . . . . . . . . . . . . . . . . . . . . . 10-14
Empty Fix Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-15
Limiting Use of Equality Constraints . . . . . . . . . . . . . . . . . 10-16

Examples: Simplicity and Parsimony . . . . . . . . . . . . . . . . 10-17

Example Workflow: Estimation, Forecasting,
and Simulation

11
Estimating the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3

Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5

Forecasting Using Monte Carlo Simulation . . . . . . . . . . 11-7

Comparing Forecasts with Simulation Results . . . . . . . 11-9

xii Contents



Function Reference

12
Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

GARCH Specification Structure . . . . . . . . . . . . . . . . . . . . . 12-2

GARCH Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3

General Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3

Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4

Statistics and Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4

Functions — Alphabetical List

13

Method Reference

14
Monte Carlo Simulation of Stochastic Differential

Equations (SDEs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2

Stochastic Differential Equation (SDE) Class
Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3

xiii



Methods — Alphabetical List

15

Bibliography

A

Examples

B
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2

Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2

Simulating Univariate Brownian Motion Models . . . . . B-2

Monte Carlo Simulation of Stochastic Differential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3

Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3

Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3

Unit Root Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4

Model Selection and Analysis . . . . . . . . . . . . . . . . . . . . . . . B-4

Example Workflow: Estimation, Forecasting, and Monte
Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4

xiv Contents



Glossary

Index

xv



xvi Contents



1

Getting Started

Product Overview (p. 1-2) GARCH Toolbox™ software usage
and capabilities

What Is GARCH? (p. 1-3) Defines GARCH, and characteristics
of GARCH models that are commonly
associated with financial time series

Expected Background (p. 1-6) Describes the intended audience for
this product.

Technical Conventions (p. 1-7) Usage of common mathematical
terms in this documentation

Example Financial Time-Series Data
Sets (p. 1-12)

The financial time-series data
sets, available in the MAT-file
garchdata.mat, that you use
in examples throughout this
documentation



1 Getting Started

Product Overview
The GARCH Toolbox™ software, combined with MATLAB®, Optimization
Toolbox™, and Statistics Toolbox™ software, provides an integrated
computing environment for modeling the volatility of economic time series.
The GARCH Toolbox software uses ARMAX conditional mean models
combined with conditional variance models of GARCH, GJR, or EGARCH
form to perform simulation, forecasting, and parameter estimation of time
series in the presence of conditional heteroscedasticity. Supporting functions
perform tasks such as pre- and post-estimation diagnostic testing, hypothesis
testing of residuals, model order selection, and time-series transformations.
Graphics capabilities let you plot correlation functions and visually compare
matched innovations, volatility, and return series.

More specifically, you can:

• Specify general ARMAX conditional mean models combined with
conditional variance models of GARCH, GJR, or EGARCH form for
univariate asset returns

• Estimate parameters of general ARMAX conditional mean models combined
with conditional variance models of GARCH, GJR, or EGARCH form

• Generate minimum mean square error forecasts of the conditional mean
and conditional variance of univariate return series.

• Perform pre- and post-estimation diagnostic and hypothesis testing, such
as Engle’s ARCH test, Ljung-Box Q-statistic test, likelihood ratio tests,
and AIC/BIC model order selection

• Perform graphical correlation analysis, including autocorrelation,
cross-correlation, and partial autocorrelation

• Convert price/return series to return/price series, and transform finite-order
ARMA models to infinite-order AR and MA models

• Perform Monte Carlo simulation of univariate returns, innovations, and
conditional volatilities

• Model dependent financial and economic variables, such as interest rates
and equity prices, by performing Monte Carlo simulation of Stochastic
Differential Equations (SDEs)

1-2



What Is GARCH?

What Is GARCH?

In this section...

“About GARCH” on page 1-3

“Modeling with GARCH” on page 1-3

“Limitations of GARCH Modeling” on page 1-4

About GARCH
GARCH stands for generalized autoregressive conditional heteroscedasticity.
You can think of heteroscedasticity as time-varying variance (volatility).
Conditional implies a dependence on the observations of the immediate past,
and autoregressive describes a feedback mechanism that incorporates past
observations into the present. GARCH, then, is a mechanism that includes
past variances in the explanation of future variances. More specifically,
GARCH is a time-series technique that you use to model the serial dependence
of volatility.

In this documentation, whenever a time series is said to have GARCH effects,
the series is heteroscedastic, meaning that its variances vary with time. If its
variances remain constant with time, the series is homoscedastic.

Modeling with GARCH
GARCH modeling builds on advances in the understanding and modeling of
volatility in the last decade. It takes into account excess kurtosis (fat tail
behavior) and volatility clustering, two important characteristics of financial
time series. It provides accurate forecasts of variances and covariances of
asset returns through its ability to model time-varying conditional variances.
Therefore, you can apply GARCH models to such diverse fields as:

• Risk management

• Portfolio management and asset allocation

• Option pricing

• Foreign exchange

• The term structure of interest rates

1-3



1 Getting Started

You can find highly significant GARCH effects in equity markets [7] for:

• Individual stocks

• Stock portfolios and indices

• Equity futures markets

These effects are important in areas such as value-at-risk (VaR) and other
risk management applications that concern the efficient allocation of capital.
You can use GARCH models to:

• Examine the relationship between long- and short-term interest rates.

• Analyze time-varying risk premiums [7] as the uncertainty for rates over
various horizons changes over time.

• Model foreign-exchange markets, which couple highly persistent periods of
volatility and tranquility with significant fat-tail behavior [7].

Note Bollerslev [6] developed GARCH as a generalization of Engle’s [14]
original ARCH volatility modeling technique. He designed it to offer a more
parsimonious model (using fewer parameters) that lessens the computational
burden.

Limitations of GARCH Modeling
Although GARCH models are useful across a wide range of applications, they
have the following limitations:

• GARCH models are only part of a solution. Although GARCH models
usually apply to return series, financial decisions are rarely based solely on
expected returns and volatilities.

• GARCH models are parametric specifications that operate best under
relatively stable market conditions [18]. GARCH is explicitly designed
to model time-varying conditional variances. However, GARCH models
often fail to capture highly irregular phenomena. These include wild
market fluctuations (for example, crashes and later rebounds) and other
unanticipated events that can lead to significant structural change.

1-4



What Is GARCH?

• GARCH models often fail to fully capture the fat tails observed in asset
return series. Heteroscedasticity explains some, but not all, fat-tail
behavior. To compensate for this limitation, fat-tailed distributions such as
Student’s t have been applied to GARCH modeling.

1-5



1 Getting Started

Expected Background
In general, this documentation assumes that you are familiar with the
basic concepts of generalized autoregressive conditional heteroscedasticity
(GARCH) modeling.

In designing GARCH Toolbox™ documentation, we assume your title is
similar to one of these:

• Analyst, quantitative analyst

• Risk manager

• Portfolio manager

• Asset allocator

• Financial engineer

• Trader

• Student, professor, or other academic

We also assume your background, education, training, and responsibilities
match some aspects of this profile:

• Finance, economics, perhaps accounting

• Engineering, mathematics, physics, other quantitative sciences

• Focus on quantitative approaches to financial problems

1-6



Technical Conventions

Technical Conventions

In this section...

“Array and Vector Size” on page 1-7

“Vector Length” on page 1-7

“Time-Series Arrays” on page 1-7

“Conditional vs. Unconditional” on page 1-8

“Precision” on page 1-8

“Prices, Returns, and Compounding” on page 1-8

“Stationary and Non-stationary Time Series” on page 1-9

Tip This section describes usage of common mathematical terms in this
documentation. For definitions of GARCH-specific terms, see the “Glossary”
on page Glossary-1.

Array and Vector Size
The size of an array describes the dimensions of the array. If a matrix has m
rows and n columns, its size is m-by-n.

If two arrays are the same size, their dimensions are the same. If two vectors
are of the same size, they have the same length and the same orientation.

Vector Length
The length of a vector indicates only the number of elements in the vector.
If the length of a vector is n, it could be a 1-by-n (row) vector or an n-by-1
(column) vector. Two vectors of length n, one a row vector and the other a
column vector, do not have the same size.

Time-Series Arrays
A time series is an ordered set of observations stored in a MATLAB® array. The
rows of a time-series array correspond to time-tagged indices, or observations,

1-7



1 Getting Started

and the columns correspond to sample paths, independent realizations, or
individual time series. In any given column, the first row contains the oldest
observation and the last row contains the most recent observation. In this
representation, a time-series array is column-oriented.

Note Some GARCH Toolbox™ functions can process univariate time-series
arrays formatted as either row or column vectors. However, many functions
now strictly enforce the column-oriented representation of a time series.
To avoid ambiguity, format single realizations of univariate time series as
column vectors. Representing a time series in column-oriented format avoids
misinterpretation of the arguments. It also makes it easier for you to display
data in the MATLAB Command Window.

Conditional vs. Unconditional
The term conditional implies explicit dependence on a past sequence of
observations. The term unconditional applies more to long-term behavior of a
time series, and assumes no explicit knowledge of the past.

Precision
The GARCH Toolbox software performs all its calculations in double precision.
To set the numeric format for your display, click File > Preferences >
Command Window > Text display. The default is short.

Prices, Returns, and Compounding
The GARCH Toolbox software assumes that time-series vectors and matrices
are time-tagged series of observations. The toolbox lets you convert a given
price series to a return series using either continuous compounding or simple
periodic compounding.

If you denote successive price observations made at times t and t + 1 as Pt and
Pt + 1, respectively, continuous compounding transforms a price series {Pt} into
a return series {yt} as

1-8



Technical Conventions

y
P
P

P Pt
t

t
t t= = −+
+log log1
1

(1-1)

Simple periodic compounding defines the transformation as

y
P P

P
P
Pt

t t

t

t

t
=

−
= −+ +1 1 1

(1-2)

Continuous compounding is the default GARCH Toolbox compounding
method, and is the preferred method for most of continuous-time finance.
Since GARCH modeling is typically based on relatively high frequency data
(daily or weekly observations), the difference between the two methods is
usually small. However, some toolbox functions produce results that are
approximate for simple periodic compounding, but exact for continuous
compounding. If you adopt the continuous compounding default convention
when moving between prices and returns, all toolbox functions produce exact
results.

Stationary and Non-stationary Time Series
The GARCH Toolbox software assumes that return series are stationary
processes. The price-to-return transformation generally guarantees a stable
data set for GARCH modeling.

The following figure illustrates an equity price series. It shows daily closing
values of the NASDAQ Composite Index, as described in “NASDAQ” on page
1-13. There appears to be no long-run average level about which the series
evolves, indicating a non-stationary time series.

1-9



1 Getting Started

The following figure illustrates the continuously compounded returns
associated with the same price series. In contrast, the returns appear to be
stable over time, and the transformation from prices to returns has produced
a stationary time series.

1-10



Technical Conventions

1-11



1 Getting Started

Example Financial Time-Series Data Sets

In this section...

“About the Examples in this Documentation” on page 1-12

“DEM2GBP” on page 1-12

“NASDAQ” on page 1-13

“NYSE” on page 1-13

“SDE_Data” on page 1-14

About the Examples in this Documentation
The results you obtain when you recreate examples in this documentation
may differ slightly from those shown in the text because of differences in:

• Platforms (operating systems)

• Versions of the MATLAB® software

• Versions of the Optimization Toolbox™ software

• Versions of supporting math libraries

These differences in results propagate through later examples that use these
results as input. These differences, however, do not affect the outcome of
the examples.

DEM2GBP
The DEM2GBP series contains daily observations of the Deutschmark/British
Pound foreign-exchange rate; that is, it is an FX price series. The sample
period is from January 2, 1984, to December 31, 1991, for a total of 1975 daily
observations of FX exchange rates.

This price series derives from the corresponding daily percentage nominal
returns for the Deutschemark/British Pound exchange rate computed as

y
P
P

P Pt
t

t
t t= = −+
+100 1001
1ln( ) [ln( ) ln( )]

1-12



Example Financial Time-Series Data Sets

where Pt is the bilateral Deutschmark/British Pound FX rate constructed from
the corresponding U.S. dollar rates. The original nominal returns, expressed
in percent, were originally published in Bollerslev and Ghysels [9].

You can also obtain the percentage returns data from the Journal of Business
and Economic Statistics (JBES) FTP site:

• Go to
ftp://www.amstat.org/JBES_View/96-2-APR/bollerslev_ghysels.

• Download the file bollerslev.sec41.dat.

The sample period discussed in the Bollerslev and Ghysels article is from
January 3, 1984, to December 31, 1991, for a total of 1974 observations of
daily percentage nominal returns. This data is from the Currency Web site,
http://www.oanda.com. These returns, combined with an approximate
closing exchange rate from January 2, 1984, allow an approximate
reconstruction of the corresponding FX closing price series.

This particular FX price series appears in this documentation because it has
been promoted as an informal benchmark for GARCH time-series software
validation. See McCullough & Renfro [27], and Brooks, Burke, & Persand [11]
for details. The estimation results published in these references are based
on the original percentage returns. The GARCH Toolbox™ software presents
the data as a price series merely to maintain consistency with other data
sets included in this documentation.

NASDAQ
The nasdaq series contains daily closing values of the NASDAQ Composite
Index. The sample period is from January 2, 1990, to December 31, 2001, for
a total of 3028 daily equity index observations.

The NASDAQ Composite closing index values are from the Market Data
section of the NASDAQ Web page, http://www.nasdaq.com/.

NYSE
The NYSE series contains daily closing values of the New York Stock Exchange
Composite Index. The sample period is from January 2, 1990, to December

1-13

ftp://www.amstat.org/JBES_View/96-2-APR/bollerslev_ghysels
http://www.oanda.com
http://www.nasdaq.com/


1 Getting Started

31, 2001, for a total of 3028 daily equity index observations of the NYSE
Composite Index.

The NYSE Composite Index daily closing values are from the Market
Information section of the NYSE Web page, http://www.nyse.com/.

SDE_Data
The SDE_Data series consists of a daily historical data set whose sample
period is from February 7, 2001 to April 24, 2006, that includes the following:

• 3-month EURIBOR, quoted as an annual percentage rate and converted to
daily effective yield.

• The closing index levels of representative large-cap equity indices of
Canada (TSX Composite), France (CAC 40), Germany (DAX), Japan (Nikkei
225), UK (FTSE 100), and US (S&P 500).

1-14

http://www.nyse.com/


2

Introduction

About Financial Time Series
Modeling (p. 2-2)

General financial time-series
modeling concepts

Conditional Mean and Variance
Models (p. 2-7)

GARCH Toolbox™ models that
describe conditional mean and
variance

The Default Model (p. 2-13) GARCH Toolbox default conditional
mean and variance models

Primary Toolbox Functions (p. 2-14) Core functions you use to perform
estimation, simulation, and
forecasting

Example: Analysis and Estimation
Using the Default Model (p. 2-16)

Uses the default model to examine
the Deutschmark/British Pound
foreign-exchange rate series



2 Introduction

About Financial Time Series Modeling

In this section...

“Characteristics of Financial Time Series” on page 2-2

“Forecasting and Correlation of Financial Time Series” on page 2-5

“Serial Dependence in Innovations” on page 2-5

Characteristics of Financial Time Series
GARCH models are designed to capture characteristics that are commonly
associated with financial time series, including fat tails, volatility clustering,
and leverage effects.

Probability distributions for asset returns often exhibit fatter tails than the
standard normal, or Gaussian, distribution. The fat tail phenomenon is called
excess kurtosis. Time series that exhibit a fat tail distribution are often called
leptokurtic. The red (dashed) line in the following figure illustrates excess
kurtosis. The blue (solid) line shows a Gaussian distribution.

2-2



About Financial Time Series Modeling

In addition, financial time series usually exhibit a characteristic called
volatility clustering. In volatility clustering, large changes tend to follow large
changes, and small changes tend to follow small changes. In either case, the
changes from one period to the next are typically of unpredictable sign. Large
disturbances, positive or negative, become part of the information set used to
construct the variance forecast of the next period’s disturbance. In this way,
large shocks of either sign can persist and influence volatility forecasts for
several periods.

Volatility clustering, or persistence, suggests a time-series model in which
successive disturbances are uncorrelated, yet serially dependent. The
following figure illustrates this characteristic. It shows the daily returns
of the New York Stock Exchange Composite Index, as described in “NYSE”
on page 1-13.

2-3



2 Introduction

Volatility clustering (a type of heteroscedasticity) accounts for some but not
all of the fat tail effect (excess kurtosis) typically observed in financial data. A
part of the fat tail effect can also result from the presence of non-Gaussian
asset return distributions that happen to have fat tails. An example of such
a distribution is Student’s t.

Finally, certain classes of asymmetric GARCH models can also capture the
leverage effect. This effect often results in observed asset returns being
negatively correlated with changes in volatility. For certain asset classes,
volatility tends to rise in response to lower than expected returns and to fall
in response to higher than expected returns. These asset classes include
equities, but exclude foreign exchange.

Such an effect suggests GARCH models that include an asymmetric response
to positive and negative surprises.

2-4



About Financial Time Series Modeling

Forecasting and Correlation of Financial Time Series
You can treat a financial time series as a sequence of random observations.
This random sequence, or stochastic process, may exhibit a degree of
correlation from one observation to the next. You can use this correlation
structure to predict future values of the process based on the past history
of observations. Exploiting the correlation structure, if any, allows you to
decompose the time series into the following components:

• A deterministic component (the forecast)

• A random component (the error, or uncertainty, associated with the forecast)

The following equation uses these components to represent a univariate
model of an observed time series Pt:

y f t Xt t= − +( , )1 ε

In this equation,

• f(t – 1,X) represents the forecast, or deterministic component, of the current
return as a function of information known at time (t – 1). This forecast
includes the following:

- Past innovations { }, ,...ε εt t− −1 2

- Past observations
{ }, ,...y yt t− −1 2

- Any other relevant explanatory time-series data, X

• {ε t} is the random component. It represents the innovation in the mean of
{yt). You can also interpret the random disturbance, or shock, {ε t), as the
single-period-ahead forecast error.

Serial Dependence in Innovations
A common assumption when modeling financial time series is that the
forecast errors (innovations) are zero-mean random disturbances that are
uncorrelated from one period to the next.

2-5



2 Introduction

E

E

t T

t

t T

{ }
{ , }
ε
ε ε

=
=

≠

0
0

Although successive innovations are uncorrelated, they are not independent.
In fact, an explicit generating mechanism for a GARCH innovations process,
{ε t}, is

ε σt t tz= (2-1)

where σt is the conditional standard deviation derived from one of the
conditional variance equations shown in “Conditional Variance Models” on
page 2-10.

zt is a standardized, independent, identically distributed (i.i.d.) random draw
from some specified probability distribution. The GARCH Toolbox™ software
provides two distributions for modeling GARCH processes: Gaussian and
Student’s t.

Equation 2-1 illustrates that a GARCH innovations process {ε t} rescales an
i.i.d process {zt} such that the conditional standard deviation incorporates the
serial dependence of the conditional variance equation. Equivalently,Equation

2-1 also states that a standardized GARCH disturbance, ε σt t/ is itself an
i.i.d. random variable {z}.

GARCH models are consistent with various forms of efficient market theory.
These theories state that asset returns observed in the past cannot improve
the forecasts of asset returns in the future. Since GARCH innovations{ε t} are
serially uncorrelated, GARCH modeling does not violate efficient market
theory.

2-6



Conditional Mean and Variance Models

Conditional Mean and Variance Models

In this section...

“About Conditional Mean and Variance Models” on page 2-7

“Conditional Mean Models” on page 2-9

“Conditional Variance Models” on page 2-10

About Conditional Mean and Variance Models
GARCH literature often lacks consensus regarding the exact definition of
any particular class of GARCH model. Software vendors, researchers, and
references often disagree about the exact functional form and/or parameter
constraints of almost all GARCH models. The following information may help
reconcile some of these discrepancies.

• Although the functional form of a GARCH(P,Q) model, as described in
Equation 2-4, is standard, alternative positivity constraints exist. However,
these alternatives involve additional nonlinear inequalities that are
difficult to impose in practice. They also do not affect the GARCH(1,1)
model, which is by far the most common model. In contrast, the standard
linear positivity constraints imposed by the GARCH Toolbox™ software are
commonly used, and are straightforward to implement.

• Many references and software vendors refer to the GJR(P,Q) model,
as described in Equation 2-5, as a TGARCH, or Threshold GARCH,
model. However, others make a clear distinction between GJR(P,Q) and
TGARCH(P,Q) models: a GJR(P,Q) model is a recursive equation for the
conditional variance, and a TGARCH(P,Q) model is the identical recursive
equation for the conditional standard deviation (see, for example, Hamilton
[22] page 669, Bollerslev, et. al. [8] page 2970). Furthermore, additional
discrepancies exist regarding whether to allow both negative and positive
innovations to affect the conditional variance process. The GJR(P,Q) model
included in the GARCH Toolbox software is relatively standard.

• The GARCH Toolbox software parameterizes GARCH(P,Q) and GJR(P,Q)
models, as described in Equation 2-4 and Equation 2-5, including
constraints, in a way that allows you to interpret a GJR(P,Q) model as an
extension of a GARCH(P,Q) model. You can also interpret a GARCH(P,Q)
model as a restricted GJR(P,Q) model with zero leverage terms. This latter

2-7



2 Introduction

interpretation is useful for estimation and hypothesis testing via likelihood
ratios.

• For GARCH(P,Q) and GJR(P,Q) models, the lag lengths P and Q, and the
magnitudes of the coefficients Gi and Aj, determine the extent to which
disturbances persist. These values then determine the minimum amount of
presample data needed to initiate the simulation and estimation processes.
The Gi terms capture persistence in EGARCH models.

• Although the functional form of an EGARCH(P,Q) model (Equation 2-6) is
relatively standard, it is not the same as Nelson’s original (see Nelson [28]).
Many forms of EGARCH(P,Q) models exist. Another form is

log log [
| |

]σ κ σ
ε ε

σt i
i

P

t j
j

Q
t j j t j

t j
G A

L2

1
1

2

1
= + +

+

=
−

=

− −

−
∑ ∑

This EGARCH(P,Q) model form appears to offer an advantage. It does not
explicitly make assumptions about the conditional probability distribution.
That is, it does not assume that the distribution of zt = (ε t/σt) is Gaussian or
Student’s t. However, this is not entirely true. Though the EGARCH(P,Q)
model does not explicitly assume a distribution in this equation, such an
assumption is required for forecasting and Monte Carlo simulation in the
absence of user-specified presample data. In fact, you can easily rearrange
this equation to highlight the probability distribution.

The GARCH Toolbox software implements the form of the EGARCH(P,Q)
model described by Equation 2-6 because this model closely resembles
Nelson’s original form.

• Although EGARCH(P,Q) models require no parameter constraints to ensure
positive conditional variances, stationarity constraints are necessary. The
GARCH Toolbox software treats EGARCH(P,Q) models as ARMA(P,Q)
models for the logarithm of the conditional variance. Therefore, this toolbox
imposes nonlinear constraints on the Gi coefficients to ensure that the
eigenvalues of the characteristic polynomial are all inside the unit circle.
(See, for example, page 2969 of Bollerslev, Engle, and Nelson [8], and page
12 of Bollerslev, Chou, and Kroner [7].)

• Consider the EGARCH(P,Q) and GJR(P,Q) models, as described in Equation
2-6 and Equation 2-5. These asymmetric models capture the leverage
effect, or negative correlation, between asset returns and volatility. Both
models include leverage terms that explicitly take into account the sign

2-8



Conditional Mean and Variance Models

and magnitude of the innovation noise term. Although both models are
designed to capture the leverage effect, the way in which they do so differs.

For EGARCH(P,Q) models, the leverage coefficients Li apply to the actual
innovations ε t-1. For GJR(P,Q) models, the leverage coefficients enter
the model through a Boolean indicator, or dummy, variable. Therefore,
if the leverage effect does indeed hold, the leverage coefficientsLi should
be negative for EGARCH(P,Q) models and positive for GJR(P,Q) models.
This is in contrast to GARCH(P,Q) models, which ignore the sign of the
innovation.

• Although GARCH(P,Q) and GJR(P,Q) models include terms related to the

model innovations, ε σt t tz= , EGARCH(P,Q) models include terms related
to the standardized innovations, zt = (ε t/σt), such that zt acts as the forcing
variable for both the conditional variance and the error. In this respect,
EGARCH(P,Q) models are fundamentally unique.

• Generally, there are no asymmetries in foreign-exchange rates. Therefore,
asymmetric EGARCH(P,Q) and GJR(P,Q) conditional variance models are
often inappropriate for modeling such return series.

Conditional Mean Models
This general ARMAX(R,M,Nx) model for the conditional mean

y C y x t kt i
i

R

t t j
j

M

t j k
k

Nx
= + + +

=
−

=
−

=
∑ ∑ ∑φ ε θ ε β

1
1

1 1
( , )

(2-2)

applies to all variance models with autoregressive coefficients {Φi}, moving
average coefficients {Φj}, innovations {ε t}, and returns {yt}.

X is an explanatory regression matrix in which each column is a time series.
X(t, k) denotes the tth row and κth column of this matrix.

The eigenvalues {λ i} associated with the characteristic AR polynomial

λ φ λ φ λ φR R R
R− − − −− −

1
1

2
2 ...

must lie inside the unit circle to ensure stationarity. Similarly, the eigenvalues
associated with the characteristic MA polynomial

2-9



2 Introduction

λ φ λ φ λ φM M M
M+ + + +− −

1
1

2
2 ...

must lie inside the unit circle to ensure invertibility.

Conditional Variance Models

The conditional variance of the innovations, σ t
2

, is by definition

Var y Et t t t t− −= =1 1
2 2( ) ( )ε σ (2-3)

The key insight of GARCH lies in the distinction between conditional and
unconditional variances of the innovations process {ε t}. The term conditional
implies explicit dependence on a past sequence of observations. The term
unconditional applies more to long-term behavior of a time series, and
assumes no explicit knowledge of the past.

The various GARCH models characterize the conditional distribution ofε t
by imposing alternative parameterizations to capture serial dependence on
the conditional variance of the innovations. “About Conditional Mean and
Variance Models” on page 2-7 further defines the conditional variance models.

GARCH(P,Q) Conditional Variance
The general GARCH(P,Q) model for the conditional variance of innovations is

σ κ σ εt i
i

P

t i j
j

Q

t jG A2

1

2

1

2= + +
−

−
−

−∑ ∑
(2-4)

with constraints

G Ai
i

P

j
j

Q

= =
∑ ∑+ <

1 1
1

κ > 0

Gi ≥ 0 i = 1,2, ..., P

2-10



Conditional Mean and Variance Models

Aj ≥ 0 j = 1,2, ..., Q

The basic GARCH(P,Q) model is a symmetric variance process, in that it
ignores the sign of the disturbance.

GJR(P,Q) Conditional Variance
The general GJR(P,Q) model for the conditional variance of the innovations
with leverage terms is

σ κ σ ε εt i t i
i

P

j t j j t j
j

Q

j

Q

t jG A L S2 2

1

2

11

2= + + +−
=

− −
==

−∑ ∑∑
(2-5)

where

St-j = 1 if ε t-j < 0

St-j = 0 otherwise,

and

G A Li
i

P

j
j

Q

j
j

Q

− − −
∑ ∑ ∑+ + <

1 1 1

1
2

1

κ > 0

Gi ≥ 0 i = 1,2, ..., P

Aj ≥ 0 j = 1,2, ..., Q

Aj + Lj ≥ 0 j = 1,2, ..., Q

EGARCH(P,Q) Conditional Variance
The general EGARCH(P,Q) model for the conditional variance of the
innovations, with leverage terms and an explicit probability distribution
assumption, is

2-11



2 Introduction

log log [
| |

{
| |

}]σ κ σ
ε

σ

ε

σt i
i

P

t j
j

Q
t j

t j

t j

t j
G A E2

1
1

2

1
= + + −

=
−

=

−

−

−

−
∑ ∑ ++

=

−

−
∑ Lj
j

Q
t j

t j1
( )
ε

σ (2-6)

where

E z Et j
t j

t j
{| |} (

| |
)−

−

−
= =

ε

σ π
2

for the Gaussian distribution, and

E z Et j
t j

t j
{| |} (

| |
) (

( )

( )
)−

−

−
= = −

−
ε

σ
ν
π

ν

ν
2

1
2

2

Γ

Γ

for the Student’s t distribution, with degrees of freedom ν > 2.

The GARCH Toolbox software treats EGARCH(P,Q) models as ARMA(P,Q)

models for logσ t
2

. Thus, it includes the stationarity constraint for
EGARCH(P,Q) models by ensuring that the eigenvalues of the characteristic
polynomial

λ λ λP P P
pG G G− − − −− −

1
1

2
2 ...

are inside the unit circle.

EGARCH models are fundamentally different from GARCH and GJR models
in that the standardized innovation, zt, serves as the forcing variable for both
the conditional variance and the error. GARCH and GJR models allow for
volatility clustering (persistence) via a combination of the Gi and Aj terms.
The Gi terms capture persistence in EGARCH models.

2-12



The Default Model

The Default Model
The GARCH Toolbox™ default model is a simple constant mean model with
GARCH(1,1) Gaussian innovations, based on Equation 2-2 and Equation 2-4.

y Ct t= + ε (2-7)

σ κ σ εt t tG A2
1 1

2
1 1

2= + +− − (2-8)

Consider the conditional mean model, Equation 2-7. The returns, yt, consist
of a simple constant plus an uncorrelated white noise disturbance, ε t. This
model is often sufficient to describe the conditional mean in a financial return
series. Most financial return series do not require the comprehensiveness that
an ARMAX model provides.

Consider the conditional variance model, Equation 2-8. The variance forecast,
σ t

2
, consists of a constant plus a weighted average of last period’s forecast,

σ t−1
2

, and last period’s squared disturbance, εt−1
2

. Although financial return
series, as defined in Equation 1-1 and Equation 1-2, typically exhibit little
correlation, the squared returns often indicate significant correlation and
persistence. This implies correlation in the variance process, and is an
indication that the data is a candidate for GARCH modeling.

Although simplistic, the default model shown in Equation 2-7 and Equation
2-8 has several benefits:

• It represents a parsimonious model that requires you to estimate only four
parameters (C, κ , G1, and A1). According to Box and Jenkins [10], the fewer
parameters to estimate, the less that can go wrong. Elaborate models often
fail to offer real benefits when forecasting (see Hamilton [22], page 109).

• The simple GARCH(1,1) model captures most of the variability in most
return series. Small lags for P and Q are common in empirical applications.
Typically, GARCH(1,1), GARCH(2,1), or GARCH(1,2) models are adequate
for modeling volatilities even over long sample periods (see Bollerslev,
Chou, and Kroner [7], pages 10 and 22).

2-13



2 Introduction

Primary Toolbox Functions
GARCH Toolbox™ software usage focuses on the following functions, which
perform different tasks on GARCH models:

• garchfit, which you use for model estimation.

• garchpred, which you use for forecasting.

• garchsim, which you use for Monte Carlo simulation.

• garchinfer, which infers innovations and conditional standard deviations
using inverse filtering. This function is related to garchfit, since both
functions call the appropriate objective function.

These functions use a GARCH specification structure to share information
about the specified model. The specification structure contains the model
orders for the chosen conditional mean and variance models, and the
parameters for those models.

Note All these functions accept a specification structure as input, but only
garchfit can update the structure and provide it as an output. For more
information, see Chapter 3, “GARCH Specification Structures” .

An analysis process using real-world data may involve calling these processing
functions:

garchfit Estimates the model parameters. This function accepts a
specification structure as an input. If you provide only
the model orders for the chosen conditional mean and
variance model, garchfit populates it with the coefficients
resulting from the estimation process. If you also provide
valid coefficients, garchfit uses them as initial estimates
that the estimation process later refines. If you provide
no specification structure, garchfit assumes the default
model, as described in “The Default Model” on page 2-13.

In all cases, garchfit returns an updated specification
structure, which encapsulates parameter estimates. This

2-14



Primary Toolbox Functions

output structure is of the same form as the input structure.
You can use it as an input for further modeling.

garchpred Forecasts returns and conditional standard deviations. It
accepts as input the specification structure provided by the
garchfit estimation engine. You can also use garchpred
to forecast volatility of asset returns over multiperiod
holding intervals, or to forecast the standard errors of
conditional mean forecasts.

garchsim Simulates one or more sample paths for the return series,
innovations, and conditional standard deviation processes,
for the specified conditional mean and variance model.
You can use these sample paths to perform Monte Carlo
simulation of a given process.

For more details about these functions, see Chapter 12, “Function Reference”.

2-15



2 Introduction

Example: Analysis and Estimation Using the Default Model

In this section...

“Pre-Estimation Analysis” on page 2-16

“Parameter Estimation” on page 2-24

“Post-Estimation Analysis” on page 2-27

Pre-Estimation Analysis

About This Example
When estimating the parameters of a composite conditional mean/variance
model, you may occasionally encounter convergence problems. For example,
the estimation may appear to stall, showing little or no progress. It may
terminate prematurely before convergence. Or, it may converge to an
unexpected, suboptimal solution.

You can avoid many of these difficulties by selecting the simplest model that
adequately describes your data, and then performing a pre-fit analysis. The
following pre-estimation analysis example shows how to:

• Plot the return series and examine the ACF and PACF.

• Perform preliminary tests, including Engle’s ARCH test and the Q-test.

More specifically, the example does the following:

• Loads the data in the form of a price series.

• Converts the price series to a return series.

• Checks the return series for correlation.

• Checks for correlation in the squared returns.

• Quantifies the correlation.

2-16



Example: Analysis and Estimation Using the Default Model

Loading the Price Series Data
1 Load the MATLAB® binary file garchdata.mat, and view its contents in

the Workspace Browser:

load garchdata

The data consists of three single-column vectors of different lengths,
DEM2GBP, NASDAQ, and NYSE. Each vector is a separate price series for the
named group.

2 Use the whos command to see all the variables in the current workspace:

whos

Name Size Bytes Class

DEM2GBP 1975x1 15800 double array
NASDAQ 3028x1 24224 double array
NYSE 3028x1 24224 double array

Grand total is 8031 elements using 64248 bytes

3 DEM2GBP contains daily price observations of the Deutschemark/British
Pound foreign-exchange rate. Use the MATLAB plot function to examine
this data. Then, use the set function to set the position of and relabel
the x-axis ticks of the current figure:

2-17



2 Introduction

% plot([0:1974],DEM2GBP)
% set(gca,'XTick',[1 659 1318 1975])
% set(gca,'XTickLabel',{'Jan 1984' 'Jan 1986' 'Jan 1988' ...
% 'Jan 1992'})
%ylabel('Exchange Rate')
%title('Deutschmark/British Pound Foreign-Exchange Rate')

Converting the Prices to a Return Series
Because GARCH modeling assumes a return series, you need to convert the
prices to returns.

1 Run the utility function price2ret:

dem2gbp = price2ret(DEM2GBP);

Examine the result. The workspace information shows both the 1975-point
price series and the 1974-point return series derived from it.

2-18



Example: Analysis and Estimation Using the Default Model

2 Now, use the plot function to see the return series:

plot(dem2gbp)
set(gca,'XTick',[1 659 1318 1975])
set(gca,'XTickLabel',{'Jan 1984' 'Jan 1986' 'Jan 1988' ...

'Jan 1992'})
ylabel('Return')
title('Deutschmark/British Pound Daily Returns')

The raw return series shows volatility clustering.

Checking for Correlation in the Return Series
Call the functions autocorr and parcorr to examine the sample
autocorrelation (ACF) and partial-autocorrelation (PACF) functions,
respectively.

2-19



2 Introduction

1 Assuming that all autocorrelations are zero beyond lag zero, use the
autocorr function to compute and display the sample ACF of the returns
and the upper and lower standard deviation confidence bounds:

autocorr(dem2gbp)
title('ACF with Bounds for Raw Return Series')

2 Use the parcorr function to display the sample PACF with upper and
lower confidence bounds:

parcorr(dem2gbp)
title('PACF with Bounds for Raw Return Series')

2-20



Example: Analysis and Estimation Using the Default Model

View the sample ACF and PACF with care (see Box, Jenkins, Reinsel [10],
pages 34 and 186). The individual ACF values can have large variances
and can also be autocorrelated. However, as preliminary identification
tools, the ACF and PACF provide some indication of the broad correlation
characteristics of the returns. From these figures for the ACF and PACF,
there is little indication that you need to use any correlation structure in
the conditional mean. Also, note the similarity between the graphs.

Checking for Correlation in the Squared Returns
Although the ACF of the observed returns exhibits little correlation, the
ACF of the squared returns may still indicate significant correlation and
persistence in the second-order moments. Check this by plotting the ACF of
the squared returns:

autocorr(dem2gbp.^2)
title('ACF of the Squared Returns')

2-21



2 Introduction

This figure shows that, although the returns themselves are largely
uncorrelated, the variance process exhibits some correlation. This is
consistent with the earlier discussion in the section, “The Default Model” on
page 2-13. The ACF shown in this figure appears to die out slowly, indicating
the possibility of a variance process close to being nonstationary.

Quantifying the Correlation
Quantify the preceding qualitative checks for correlation using formal
hypothesis tests, such as the Ljung-Box-Pierce Q-test and Engle’s ARCH test.

The lbqtest function implements the Ljung-Box-Pierce Q-test for a departure
from randomness based on the ACF of the data. The Q-test is most often
used as a post-estimation lack-of-fit test applied to the fitted innovations
(residuals). In this case, however, you can also use it as part of the pre-fit
analysis. This is because the default model assumes that returns are a simple
constant plus a pure innovations process. Under the null hypothesis of no

2-22



Example: Analysis and Estimation Using the Default Model

serial correlation, the Q-test statistic is asymptotically Chi-Square distributed
(see Box, Jenkins, Reinsel [10], page 314).

The function archtest implements Engle’s test for the presence of ARCH
effects. Under the null hypothesis that a time series is a random sequence of
Gaussian disturbances (that is, no ARCH effects exist), this test statistic is
also asymptotically Chi-Square distributed (see Engle [14], pages 999-1000).

Both functions return identical outputs. The first output, H, is a Boolean
decision flag. H = 0 implies that no significant correlation exists (that is, do
not reject the null hypothesis). H = 1 means that significant correlation exists
(that is, reject the null hypothesis). The remaining outputs are the p-value
(pValue), the test statistic (Stat), and the critical value of the Chi-Square
distribution (CriticalValue).

1 Use lbqtest to verify (approximately) that no significant correlation is
present in the raw returns when tested for up to 10, 15, and 20 lags of the
ACF at the 0.05 level of significance:

[H,pValue,Stat,CriticalValue] = ...
lbqtest(dem2gbp-mean(dem2gbp),[10 15 20]',0.05);

[H pValue Stat CriticalValue]

ans =
0 0.7278 6.9747 18.3070
0 0.2109 19.0628 24.9958
0 0.1131 27.8445 31.4104

However, there is significant serial correlation in the squared returns when
you test them with the same inputs:

[H,pValue,Stat,CriticalValue] = ...
lbqtest((dem2gbp-mean(dem2gbp)).^2,[10 15 20]',0.05);

[H pValue Stat CriticalValue]

ans =
1.0000 0 392.9790 18.3070
1.0000 0 452.8923 24.9958
1.0000 0 507.5858 31.4104

2-23



2 Introduction

2 Perform Engle’s ARCH test using the function archtest:

[H,pValue,Stat,CriticalValue] = ...
archtest(dem2gbp-mean(dem2gbp),[10 15 20]',0.05);

[H pValue Stat CriticalValue]

ans =
1.0000 0 192.3783 18.3070
1.0000 0 201.4652 24.9958
1.0000 0 203.3018 31.4104

This test also shows significant evidence in support of GARCH effects
(heteroscedasticity). Each of these examples extracts the sample mean from
the actual returns. This is consistent with the definition of the conditional
mean equation of the default model, in which the innovations process is
ε t = yt – C, and C is the mean of yt.

Parameter Estimation
This section continues the “Pre-Estimation Analysis” on page 2-16 example.
It estimates model parameters, then examines the estimated GARCH model.

1 The presence of heteroscedasticity, shown in the previous analysis,
indicates that GARCH modeling is appropriate. Use the estimation
function garchfit to estimate the model parameters. Assume the default
GARCH model described in “The Default Model” on page 2-13. This only
requires that you specify the return series of interest as an argument to
the garchfit function:

[coeff,errors,LLF,innovations,sigmas,summary] = ...
garchfit(dem2gbp);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Diagnostic Information

Number of variables: 4

Functions

Objective: garchllfn

Gradient: finite-differencing

Hessian: finite-differencing (or Quasi-Newton)

2-24



Example: Analysis and Estimation Using the Default Model

Nonlinear constraints: armanlc

Gradient of nonlinear constraints: finite-differencing

Constraints

Number of nonlinear inequality constraints: 0

Number of nonlinear equality constraints: 0

Number of linear inequality constraints: 1

Number of linear equality constraints: 0

Number of lower bound constraints: 4

Number of upper bound constraints: 4

Algorithm selected

medium-scale

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

End diagnostic information

max Directional First-order

Iter F-count f(x) constraint Step-size derivative optimality

1 28 -7916.01 -2.01e-006 7.63e-006 857 1.42e+005

2 36 -7959.65 -1.508e-006 0.25 389 9.8e+007

3 45 -7963.98 -3.113e-006 0.125 131 5.29e+006

4 52 -7965.59 -1.586e-006 0.5 55.9 4.45e+007

5 65 -7966.9 -1.574e-006 0.00781 101 1.46e+007

6 74 -7969.46 -2.201e-006 0.125 14.9 2.77e+007

7 83 -7973.56 -2.663e-006 0.125 36.6 1.45e+007

8 90 -7982.09 -1.332e-006 0.5 -6.39 5.59e+006

9 103 -7982.13 -1.399e-006 0.00781 6.49 1.32e+006

10 111 -7982.53 -1.049e-006 0.25 12.5 1.87e+007

11 120 -7982.56 -1.186e-006 0.125 3.72 3.8e+006

12 128 -7983.69 -1.11e-006 0.25 0.184 4.91e+006

13 134 -7983.91 -7.813e-007 1 0.732 1.22e+006

14 140 -7983.98 -9.265e-007 1 0.186 1.17e+006

15 146 -7984 -8.723e-007 1 0.0427 9.52e+005

16 154 -7984 -8.775e-007 0.25 0.0152 6.33e+005

17 160 -7984 -8.75e-007 1 0.00197 6.98e+005

18 166 -7984 -8.763e-007 1 0.000931 7.38e+005

19 173 -7984 -8.759e-007 0.5 0.000469 7.37e+005

20 179 -7984 -8.761e-007 1 0.00012 7.22e+005

2-25



2 Introduction

21 199 -7984 -8.761e-007 -6.1e-005 0.0167 7.37e+005

22 213 -7984 -8.761e-007 0.00391 0.00582 7.26e+005

Optimization terminated successfully:

Search direction less than 2*options.TolX and

maximum constraint violation is less than options.TolCon

No Active Constraints

The default value of the Display parameter in the specification structure is
'on'. As a result, garchfit prints diagnostic optimization and summary
information to the command window in the following example. (For
information about the Display parameter, see the Optimization Toolbox™
fmincon function.)

2 Once you complete the estimation, display the parameter estimates and
their standard errors using the garchdisp function:

garchdisp(coeff,errors)

Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian
Number of Parameters Estimated: 4

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C -6.1919e-005 8.4331e-005 -0.7342
K 1.0761e-006 1.323e-007 8.1341

GARCH(1) 0.80598 0.016561 48.6685
ARCH(1) 0.15313 0.013974 10.9586

If you substitute these estimates in the definition of the default model,
Equation 2-7 and Equation 2-8, the estimation process implies that the
constant conditional mean/GARCH(1,1) conditional variance model that
best fits the observed data is

y e

e

t t

t t t

= − +

= + +

−

−
− −

6 1919

1 0761 0 80598 0 15313

005

2 006
1

2
1

.

. . .

ε

σ σ ε 22

2-26



Example: Analysis and Estimation Using the Default Model

where G1 = GARCH(1) = 0.80598 and A1 = ARCH(1) = 0.15313. In
addition, C = C = -6.1919e-005 and κ = K = 1.0761e-006.

Post-Estimation Analysis
The post-estimation analysis example continues the “Pre-Estimation
Analysis” on page 2-16 and “Parameter Estimation” on page 2-24 examples.

This example does the following:

• Compares the residuals, conditional standard deviations, and returns.

• Uses plots and quantitative techniques to compare correlation of the
standardized innovations.

• Quantifies and compares correlation of the standardized innovations.

Comparing the Residuals, Conditional Standard Deviations,
and Returns
In addition to the parameter estimates and standard errors, garchfit also
returns the optimized log-likelihood function value (LLF), the residuals
(innovations), and conditional standard deviations (sigmas).

Use the garchplot function to inspect the relationship between the
innovations (residuals) derived from the fitted model, the corresponding
conditional standard deviations, and the observed returns.

garchplot(innovations,sigmas,dem2gbp)

2-27



2 Introduction

Both the innovations (shown in the top plot) and the returns (shown in the
bottom plot) exhibit volatility clustering. Also, the sum, G1 + A1 = 0.80598 +
0.15313 = 0.95911, is close to the integrated, nonstationary boundary given
by the constraints associated with Equation 2-4.

Comparing Correlation of the Standardized Innovations
The figure in “Comparing the Residuals, Conditional Standard Deviations,
and Returns” on page 2-27 shows that the fitted innovations exhibit volatility
clustering.

1 Plot the standardized innovations (the innovations divided by their
conditional standard deviation):

plot(innovations./sigmas)
ylabel('Innovation')
title('Standardized Innovations')

2-28



Example: Analysis and Estimation Using the Default Model

The standardized innovations appear generally stable with little clustering.

2 Plot the ACF of the squared standardized innovations:

autocorr((innovations./sigmas).^2)
title('ACF of the Squared Standardized Innovations')

2-29



2 Introduction

The standardized innovations also show no correlation. Now compare the
ACF of the squared standardized innovations in this figure to the ACF of
the squared returns before fitting the default model. (See “Pre-Estimation
Analysis” on page 2-16.) The comparison shows that the default model
sufficiently explains the heteroscedasticity in the raw returns.

Quantifying and Comparing Correlation of the Standardized
Innovations
Compare the results of the Q-test and the ARCH test with the results of these
same tests in “Pre-Estimation Analysis” on page 2-16:

[H, pValue,Stat,CriticalValue] = ...
lbqtest((innovations./sigmas).^2,[10 15 20]',0.05);

[H pValue Stat CriticalValue]

ans =
0 0.5262 9.0626 18.3070
0 0.3769 16.0777 24.9958

2-30



Example: Analysis and Estimation Using the Default Model

0 0.6198 17.5072 31.4104

[H, pValue, Stat, CriticalValue] = ...
archtest(innovations./sigmas,[10 15 20]',0.05);

[H pValue Stat CriticalValue]

ans =
0 0.5625 8.6823 18.3070
0 0.4408 15.1478 24.9958
0 0.6943 16.3557 31.4104

In the pre-estimation analysis, both the Q-test and the ARCH test indicate
rejection (H = 1 with pValue = 0) of their respective null hypotheses. This
shows significant evidence in support of GARCH effects. The post-estimate
analysis uses standardized innovations based on the estimated model. These
same tests now indicate acceptance (H = 0 with highly significant pValues)
of their respective null hypotheses. These results confirm the explanatory
power of the default model.

2-31



2 Introduction

2-32



3

GARCH Specification
Structures

Introduction (p. 3-2) How the primary analysis and
modeling functions operate on the
GARCH specification structure

Associating Model Equation
Variables with Corresponding
Parameters in Specification
Structures (p. 3-4)

Associates variables used in the
model equations (“Conditional Mean
and Variance Models” on page 2-7)
with their corresponding parameters
in the specification structure

Example: Interpreting Specification
Structures (p. 3-6)

Examples of how to interpret the
contents of specification structures

Working with Specification
Structures (p. 3-9)

Creating, modifying, and retrieving
values from specification structures



3 GARCH Specification Structures

Introduction
The GARCH Toolbox™ software maintains the parameters that define a
model and control the estimation process in a specification structure.

The garchfit function creates the specification structure for the default
model (see “The Default Model” on page 2-13), and stores the model orders
and estimated parameters in it. For more complex models, use the garchset
function to explicitly specify, in a specification structure:

• The conditional variance model

• The mean and variance model orders

• (Optionally) The initial coefficient estimates

The primary analysis and modeling functions, garchfit, garchpred, and
garchsim, all operate on the specification structure. The following table
describes how each function uses the specification structure.

For more information about specification structure parameters, see the
garchset function reference page.

Function Description Use of GARCH Specification Structure

garchfit Estimates the parameters
of a conditional mean
specification of ARMAX form
and a conditional variance
specification of GARCH,
GJR, or EGARCH form.

• Input. Optionally accepts a GARCH
specification structure as input.

If the structure contains the model
orders (R, M, P, Q) but no coefficient
vectors (C, AR, MA, Regress, K, ARCH,
GARCH, Leverage), garchfit uses
maximum likelihood to estimate the
coefficients for the specified mean and
variance models.

If the structure contains coefficient
vectors, garchfit uses them as initial
estimates for further refinement. If you
do not provide a specification structure,

3-2



Introduction

Function Description Use of GARCH Specification Structure

garchfit returns a specification
structure for the default model.

• Output. Returns a specification
structure that contains a fully specified
ARMAX/GARCH model.

garchpred Provides
minimum-mean-square-error
(MMSE) forecasts of the
conditional mean and
standard deviation of a
return series, for a specified
number of periods into
the future.

• Input. Requires a GARCH specification
structure that contains the coefficient
vectors for the model for which
garchpred forecasts the conditional
mean and standard deviation.

• Output. The garchpred function does
not modify or return the specification
structure.

garchsim Uses Monte Carlo methods
to simulate sample paths for
return series, innovations,
and conditional standard
deviation processes.

• Input. Requires a GARCH specification
structure that contains the coefficient
vectors for the model for which
garchsim simulates sample paths.

• Output. garchsim does not modify or
return the specification structure.

3-3



3 GARCH Specification Structures

Associating Model Equation Variables with Corresponding
Parameters in Specification Structures

In this section...

“About Specification Structure Parameter Names” on page 3-4

“Conditional Mean Model” on page 3-4

“Conditional Variance Models” on page 3-5

About Specification Structure Parameter Names
The names of specification structure parameters that define the ARMAX and
GARCH models usually reflect the variable names of their corresponding
components in the conditional mean and variance model equations described
in “Conditional Mean and Variance Models” on page 2-7.

Conditional Mean Model
In the conditional mean model:

• R and M represent the order of the ARMA(R,M) conditional mean model.

• C represents the constant C.

• AR represents the R-element autoregressive coefficient vector Φi.

• MA represents the M-element moving average coefficient vector Θj.

• Regress represents the regression coefficients βk.

Unlike the other components of the conditional mean equation, the GARCH
specification structure does not include X. X is an optional matrix of returns
that some GARCH Toolbox™ functions use as explanatory variables in the
regression component of the conditional mean. For example,y could contain
return series of a market index collected over the same period as the return
series X. Toolbox functions that require a regression matrix provide a separate
argument you can use to specify it.

3-4



Associating Model Equation Variables with Corresponding Parameters in Specification Structures

Conditional Variance Models
In conditional variance models:

• P and Q represent the order of the GARCH(P,Q), GJR(P,Q), or EGARCH(P,Q)
conditional variance model.

• K represents the constant κ .

• GARCH represents the P-element coefficient vector Gi.

• ARCH represents the Q-element coefficient vector Aj.

• Leverage represents the Q-element leverage coefficient vector, Lj, for
asymmetric EGARCH(P,Q) and GJR(P,Q) models.

3-5



3 GARCH Specification Structures

Example: Interpreting Specification Structures
1 Display the fields of the coeff specification structure, for the estimated

default model from “Example: Analysis and Estimation Using the Default
Model” on page 2-16:

coeff
coeff =

Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'
Distribution: 'Gaussian'

C: -6.1919e-005
VarianceModel: 'GARCH'

P: 1
Q: 1
K: 1.0761e-006

GARCH: 0.8060
ARCH: 0.1531

The terms to the left of the colon (:) denote parameter names.

When you display a specification structure, only the fields that are
applicable to the specified model appear. For example, R = M = 0 in this
model, so these fields do not appear.

By default, garchset and garchfit automatically generate the Comment
field. This field summarizes the ARMAX and GARCH models used for
the conditional mean and variance equations. You can use garchset to
set the value of the Comment field, but the value you give it replaces the
summary statement.

2 Display the MA(1)/GJR(1,1) estimated model from “Specifying Presample
Data” on page 6-21:

coeff =
Comment: 'Mean: ARMAX(0,1,0); Variance: GJR(1,1)'

Distribution: 'Gaussian'
M: 1
C: 5.6403e-004

MA: 0.2501
VarianceModel: 'GJR'

P: 1

3-6



Example: Interpreting Specification Structures

Q: 1
K: 1.1907e-005

GARCH: 0.6945
ARCH: 0.0249

Leverage: 0.2454
Display: 'off'

length(MA) = M, length(GARCH) = P, and length(ARCH) = Q.

3 Consider what you would see if you had created the specification structure
for the same MA(1)/GJR(1,1) example, but had not yet estimated the model
coefficients. The specification structure would appear as follows:

spec = garchset('VarianceModel','GJR','M',1,'P',1,'Q',1,...
'Display','off')

spec =
Comment: 'Mean: ARMAX(0,1,?); Variance: GJR(1,1)'

Distribution: 'Gaussian'
M: 1
C: []

MA: []
VarianceModel: 'GJR'

P: 1
Q: 1
K: []

GARCH: []
ARCH: []

Leverage: []
Display: 'off'

The empty matrix symbols, [], indicate that the specified model requires
these fields, but that you have not yet assigned them values. For the
specification to be complete, you must assign valid values to these fields.

You can use garchset to assign values, for example, as initial parameter
estimates, to these fields. You can also pass such a specification structure
to garchfit, which uses the parameters it estimates to complete the model
specification. You cannot pass such a structure to garchsim, garchinfer,
or garchpred. These functions require complete specifications.

3-7



3 GARCH Specification Structures

For descriptions of all the specification structure fields, see the garchset
function reference page.

3-8



Working with Specification Structures

Working with Specification Structures

In this section...

“Creating Specification Structures” on page 3-9

“Modifying Specification Structures” on page 3-11

“Retrieving Specification Structure Values” on page 3-12

Creating Specification Structures
In general, you must use the garchset function to create a specification
structure that contains at least the chosen variance model and the mean and
variance model orders. The only exception is the default model, for which
garchfit can create a specification structure. The model parameters you
provide must specify a valid model.

When you create a specification structure, you can specify both the conditional
mean and variance models. Alternatively, you can specify either the
conditional mean or the conditional variance model. If you do not specify both
models, garchset assigns default parameters to the one that you did not
specify.

For the conditional mean, the default is a constant ARMA(0,0,?) model.
For the conditional variance, the default is a constant GARCH(0,0) model.
The question mark (?) indicates that garchset cannot interpret whether
you intend to include a regression component (see Chapter 8, “Regression
Components”).

The following examples create specification structures and display the
results. You need only enter the leading characters that uniquely identify
the parameter. As illustrated here, garchset parameter names are case
insensitive.

For the Default Model
The following is a sampling of statements that all create specification
structures for the default model.

spec = garchset('R',0,'m',0,'P',1,'Q',1);

3-9



3 GARCH Specification Structures

spec = garchset('p',1,'Q',1);
spec = garchset;

The output of each of these commands is the same. The Comment field
summarizes the model. Because R = M = 0, the fields R, M, AR, and MA do
not appear.

spec =
Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'

Distribution: 'Gaussian'
C: []

VarianceModel: 'GARCH'
P: 1
Q: 1
K: []

GARCH: []
ARCH: []

For ARMA(0,0)/GJR(1,1)
garchset accepts the constant default for the mean model.

spec = garchset('VarianceModel','GJR','P',1,'Q',1)

spec =
Comment: 'Mean: ARMAX(0,0,?); Variance: GJR(1,1)'

Distribution: 'Gaussian'
C: []

VarianceModel: 'GJR'
P: 1
Q: 1
K: []

GARCH: []
ARCH: []

Leverage: []

3-10



Working with Specification Structures

For AR(2)/GARCH(1,2) with Initial Parameter Estimates
garchset infers the model orders from the lengths of the coefficient vectors,
assuming a GARCH(P,Q) conditional variance process as the default:

spec = garchset('C',0,'AR',[0.5 -0.8],'K',0.0002,...
'GARCH',0.8,'ARCH',[0.1 0.05])

spec =

Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,2)'
Distribution: 'Gaussian'

R: 2
C: 0

AR: [0.5000 -0.8000]
VarianceModel: 'GARCH'

P: 1
Q: 2
K: 2.0000e-004

GARCH: 0.8000
ARCH: [0.1000 0.0500]

Modifying Specification Structures
The following example creates an initial structure, and then updates the
existing structure with additional parameter/value pairs. At each step, the
result must be a valid specification structure:

spec = garchset('VarianceModel','EGARCH','M',1,'P',1,'Q',1);
spec = garchset(spec,'R',1,'Distribution','T')

spec =
Comment: 'Mean: ARMAX(1,1,?); Variance: EGARCH(1,1)'

Distribution: 'T'
DoF: []

R: 1
M: 1
C: []

AR: []
MA: []

VarianceModel: 'EGARCH'
P: 1
Q: 1

3-11



3 GARCH Specification Structures

K: []
GARCH: []
ARCH: []

Leverage: []

Retrieving Specification Structure Values
This example does the following:

1 Creates a specification structure, spec, by providing the model coefficients.

2 Uses the garchset function to infer the model orders from the lengths of
specified model coefficients, assuming the GARCH(P,Q) default variance
model.

3 Uses garchget to retrieve the variance model and the model orders for
the conditional mean.

You need only type the leading characters that uniquely identify the
parameter.

spec = garchset('C',0,'AR',[0.5 -0.8],'K',0.0002,...
'GARCH',0.8,'ARCH',[0.1 0.05])

spec =

Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,2)'
Distribution: 'Gaussian'

R: 2
C: 0

AR: [0.5000 -0.8000]
VarianceModel: 'GARCH'

P: 1
Q: 2
K: 2.0000e-004

GARCH: 0.8000
ARCH: [0.1000 0.0500]

R = garchget(spec,'R')
R =

2

M = garchget(spec,'m')

3-12



Working with Specification Structures

M =
0

var = garchget(spec,'VarianceModel')
var =

GARCH

3-13



3 GARCH Specification Structures

3-14



4

Simulation of GARCH
Models

Simulating Single and Multiple
Paths (p. 4-2)

How to simulate single and multiple
paths for return series, innovations,
and conditional standard deviation
processes

Working with Presample Data
(p. 4-7)

How to use automatically generated
and user-supplied presample data



4 Simulation of GARCH Models

Simulating Single and Multiple Paths

In this section...

“Introduction” on page 4-2

“Preparing the Example Data” on page 4-2

“Simulating Single Paths” on page 4-3

“Simulating Multiple Paths” on page 4-5

Introduction
Given models for the conditional mean and variance, as described in
“Conditional Mean and Variance Models” on page 2-7, the garchsim function
can simulate one or more sample paths for return series, innovations, and
conditional standard deviation processes.

The section “Example: Analysis and Estimation Using the Default
Model” on page 2-16 uses the default GARCH(1,1) model to model the
Deutschmark/British pound foreign-exchange series. These examples use the
resulting model

y et t= − +−6 1919 005. ε

σ σ εt t te2 006
1

2
1

21 0761 0 80598 0 15313= + +−
− −. . .

to simulate sample paths for return series, innovations, and conditional
standard deviation processes.

Preparing the Example Data
Restore your workspace as needed. Due to space constraints, this example
shows only part of the output of the estimation:

load garchdata
dem2gbp = price2ret(DEM2GBP);
[coeff,errors,LLF,innovations,sigmas] = garchfit(dem2gbp);
coeff

4-2



Simulating Single and Multiple Paths

coeff =
Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'

Distribution: 'Gaussian'
C: -6.1919e-005

VarianceModel: 'GARCH'
P: 1
Q: 1
K: 1.0761e-006

GARCH: 0.8060
ARCH: 0.1531

Simulating Single Paths

1 Generate a single path of 1000 observations starting from the initial
MATLAB® random number generator state. Assuming 250 trading days
per year, this represents roughly fours years’ worth of daily data:

randn('state',0);
rand('twister',0);
[e,s,y] = garchsim(coeff,1000);

Tip For information about how to generate coeff for use in this example,
see “Introduction” on page 4-2.

The result is a single realization of 1000 observations each for the
innovations {ε t}, conditional standard deviations {σt}, and returns {yt}
processes. The output variables e, s, and y represent these processes.

4-3



4 Simulation of GARCH Models

2 Plot the garchsim output data.

garchplot(e,s,y)

4-4



Simulating Single and Multiple Paths

Note If you do not specify the number of observations, the default is 100.
For example, the command

[e,s,y] = garchsim(coeff)

produces a single path of 100 observations.

Simulating Multiple Paths
In some cases, you may need multiple realizations. Use the same model
as in “Simulating Single Paths” on page 4-3 to simulate 1000 paths of 200
observations each:

4-5



4 Simulation of GARCH Models

randn('state',0);
rand('twister',0);
[e,s,y] = garchsim(coeff,200,1000);

The {ε t}, {σt}, and {yt} processes are 200-by-1000 element matrices. These
arrays that require large amounts of memory. Because of the way the GARCH
Toolbox™ software manages transients, simulating this data requires more
memory than the 4800000 bytes indicated in the Workspace Browser.

For more information about transients, see “Automatically Generating
Presample Data” on page 4-7.

4-6



Working with Presample Data

Working with Presample Data

In this section...

“About Presample Data” on page 4-7

“Automatically Generating Presample Data” on page 4-7

“Running Simulations With User-Specified Presample Data” on page 4-13

About Presample Data
Because the mean equation and the variance equations can be recursive in
nature, they require initial, or presample, data to initiate the simulation.
This section explains the use of automatically generated and user-supplied
presample data. It also discusses response tolerance and the minimization of
transient effects for automatically generated presample data.

Automatically Generating Presample Data
When you allow garchsim to automatically generate required initial data:

• garchsim performs independent path simulation. All simulated realizations
are unique in that they evolve independently and share no common
presample conditioning data.

• garchsim generates the presample data in a way that minimizes transient
effects in the output processes.

Automatically Minimizing Transient Effects
garchsim generates output processes in a (approximately) steady state by
attempting to eliminate transients in the data it simulates. It first estimates
the number of observations needed for the transients to decay to some
arbitrarily small value, subject to a 10000-observation maximum. It then
generates a number of observations equal to the sum of this estimated value
and the number of observations you request. garchsim then ignores the earlier
estimated number of initial observations needed for the transients to decay
sufficiently, and returns only the requested number of later observations.

To do this, garchsim interprets a GARCH(P,Q) or GJR(P,Q) conditional
variance process as an ARMA(max(P,Q),P) model for the squared innovations.

4-7



4 Simulation of GARCH Models

It also interprets an EGARCH(P,Q) process as an ARMA(P,Q) model for the
log of the conditional variance. (See, for example, Bollerslev [6], p. 310.) It
then interprets the ARMA model as the correlated output of a linear filter and
estimates its impulse response. It does so by finding the magnitude of the
largest eigenvalue of its autoregressive polynomial. Based on this eigenvalue,
garchsim estimates the number of observations (subject to a maximum of
10000) needed for the magnitude of the impulse response (which begins at 1) to
decay below the default response tolerance 0.01 (1 percent). If the conditional
mean has an ARMA(R,M) component, then garchsim also estimates the
number of observations needed for the impulse response to decay below the
response tolerance. This number is also subject to a maximum of 10000.

The effect of transients in the simulation process parallels that in the
estimation, or inference, process. “Presample Data and Transient Effects” on
page 6-24 provides an example of transient effects in the estimation process.

Specifying a Scalar Response Tolerance
This example compares simulated observations generated using the default
response tolerance, 0.01, and a larger tolerance, 0.05, using the model from
“Simulating Single and Multiple Paths” on page 4-2.

1 Simulate a single path of 200 observations, using the default tolerance
0.01, and set the scalar integer random generator state to its initial state 0:

randn('state',0);
rand('twister',0);
[e1,s1,y1] = garchsim(coeff,200,1);
garchplot(e1,s1,y1)

4-8



Working with Presample Data

2 Now repeat the simulation, specifying the scalar Tolerance argument
as 0.05:

randn('state',0);
rand('twister',0);
[e5,s5,y5] = garchsim(coeff,200,1,[],[],0.05);
garchplot(e5,s5,y5)

4-9



4 Simulation of GARCH Models

The observations generated using the 0.05 response tolerance are the same
as those generated for the default 0.01 tolerance, but shifted to the right.
This is because fewer observations are required for the magnitude of the
impulse response to decay below the larger 0.05 tolerance.

If Tolerance is smaller than 0.01, garchsim might have to generate more
observations. This could cause it to reach the 10000 observation transient
decay period maximum, or run out of memory.

Storage Considerations
Depending on the values of the parameters in the simulated conditional mean
and variance models, you may need long presample periods for the transients
to die out. Although the simulation outputs relatively small matrices, the
initial computation of these transients can consume large amounts of memory,

4-10



Working with Presample Data

leading to performance degradation. Because of this, garchsim imposes
a maximum of 10000 observations to the transient decay period of each
realization. The example in “Simulating Multiple Paths” on page 4-5, which
simulates three 200-by-1000 element arrays, requires intermediate storage
for many more than 200 observations.

Other Ways to Minimize Transient Effects
If you suspect that transients persist in the simulated data garchsim returns,
use one of the following methods to minimize their effect:

• “Oversampling” on page 4-11

• “Recycling Outputs” on page 4-13

Oversampling. Generate samples that are larger than you need, and delete
observations from the beginning of each output series. For example, suppose
you simulate 10 independent paths of 1000 observations each for{ε t}, {σt}, and
{yt}, starting from a known scalar random number state (12345).

1 Generate 1200 observations:

randn('state',12345);
rand('twister',12345);
[e,s,y] = garchsim(coeff,1200,10);

garchsim generates sufficient presample data so that it can ignore initial
samples that might be affected by transients. It then returns only the
requested 1200 later observations.

4-11



4 Simulation of GARCH Models

2 Further minimize the effect of transients by retaining only the last 1000
observations of interest:

e = e(end-999:end,:);
s = s(end-999:end,:);
y = y(end-999:end,:);

Note This example also illustrates how to specify a scalar random number
generator state. This use corresponds to the rand and randn syntaxes,
rand('state',j) and randn('state',j).

4-12



Working with Presample Data

Recycling Outputs. Simulate the desired number of observations without
explicitly providing presample data; that is, use garchsim to automatically
generate the presample data. Then run the simulation again, using the
simulated observations as the presample data. Repeat this process until
you have sufficiently eliminated transient effects. For information about
supplying presample data, see “Running Simulations With User-Specified
Presample Data” on page 4-13.

Running Simulations With User-Specified Presample
Data
To explicitly specify all required presample data, use the following time-series
input arrays:

• PreInnovations, which is associated with the Innovations garchsim
output

• PreSigmas, which is associated with the Sigmas garchsim output

• PreSeries, which is associated with the Series garchsim output

When specified, garchsim uses these presample arrays to initiate the filtering
process and form the conditioning set upon which the simulated realizations
are based.

The PreInnovations, PreSigmas, and PreSeries arrays and their associated
outputs are column-oriented. Each column of each array is associated with
a distinct realization, or sample path. The first row of each array stores the
oldest data, and the last row stores the most recent data.

You can specify these input arguments as matrices (with multiple columns),
or as single-column vectors. The following table summarizes the minimum
number of rows required to successfully initiate the simulation process.

Garchsim Input
Argument

Minimum Number of
Rows
GARCH(P,Q),
GJR(P,Q) EGARCH(P,Q)

PreInnovations max(M,Q) max(M,Q)

4-13



4 Simulation of GARCH Models

Garchsim Input
Argument

Minimum Number of
Rows
GARCH(P,Q),
GJR(P,Q) EGARCH(P,Q)

PreSigmas P max(P,Q)

PreSeries R R

If you specify these input arguments as matrices, garchsim uses each column
to initiate simulation of the corresponding column of the Innovations,
Sigmas, and Series outputs. Each of the presample inputs must have
NUMPATHS columns.

If you specify these input arguments as column vectors, and NUMPATHS is
greater than 1, garchsim performs dependent path simulation. In this case,
garchsim applies the same vector to each column of the corresponding
Innovations, Sigmas, and Series outputs. All simulated sample paths share
a common conditioning set. Although all realizations evolve independently,
they share common presample conditioning data. Dependent path simulation
enables the simulated sample paths to evolve from a common starting
point, and allows Monte Carlo simulation of forecasts and forecast error
distributions. See Chapter 11, “Example Workflow: Estimation, Forecasting,
and Simulation”.

If you specify at least one, but fewer than three, sets of presample data,
garchsim does not attempt to derive presample observations for those you
omit. When specifying your own presample data, include all required data for
the given conditional mean and variance models. See the example “Specifying
Presample Data” on page 6-21.

Note You can also use the garchsim input argument State to specify your
own standardized noise process.

4-14



5

Monte Carlo Simulation
of Stochastic Differential
Equations

Introduction (p. 5-2) High-level overview of tasks you can
perform with stochastic differential
equations

Terminology (p. 5-3) Explanations of terms used in the
following sections

Behavior and Syntax of SDE Objects
(p. 5-5)

Common characteristics and
behavior of SDE objects and utilities

Parametric Specification (p. 5-7) Specifying parameters that support
relationships commonly found in
SDE simulation

Using SDE Objects to Create Models
(p. 5-11)

How to instantiate objects from the
SDE class hierarchy to represent
models

Solving Problems with SDE Models
(p. 5-29)

Examples of creating SDE objects to
model and solve problems

Creating User-Specified Functions
(p. 5-69)

Creating your own functions

Managing Memory, Performance,
and Solution Accuracy (p. 5-72)

Information to optimize memory,
performance, and accuracy of
solutions



5 Monte Carlo Simulation of Stochastic Differential Equations

Introduction
The GARCH Toolbox™ software enables you to model dependent financial and
economic variables, such as interest rates and equity prices, by performing
Monte Carlo simulation of stochastic differential equations (SDEs). The
flexible architecture of the SDE engine provides efficient simulation methods
that allow you to create new simulation and derivative pricing methods.

Tasks you can perform using this functionality include:

• Running vectorized methods to simulate static univariate models.

• Simulating static, separable Geometric Brownian Motion and Brownian
Motion multivariate models.

• Performing path-dependent analysis using end-of-period processing and
state vector adjustments.

• Sampling SDEs at intermediate times without reporting those times,
improving accuracy and reducing memory consumption.

• Approximating analytic solutions for separable geometric Brownian motion
and Hull-White/Vasicek models.

• Reducing variance using antithetic sampling.

The SDE architecture also supports the following features:

• Euler approximation default simulation method

• Stochastic interpolation and Brownian bridge simulation methods

• Support for any combination of static and dynamic model parameters

• Support for state and Brownian vectors of arbitrary dimensionality

• Optional user-specified random number generation and
dependence/correlation structure

• The ability to avoid storing state and noise time series to improve
performance and memory efficiency

5-2



Terminology

Terminology

In this section...

“Trials vs. Paths” on page 5-3

“NTRIALS, NPERIODS, and NSTEPS” on page 5-4

Trials vs. Paths
Monte Carlo simulation literature often uses different terminology for
the evolution of the simulated variables of interest, such as trials, paths,
realizations, or replications. The following sections use the terms trial and
path interchangeably.

However, there are situations where you should distinguish between these
terms. Specifically, the term trial often implies the result of an independent
random experiment (for example, the evolution of the price of a single stock or
portfolio of stocks). Such an experiment computes the average or expected
value of a variable of interest (for example, the price of a derivative security)
and its associated confidence interval.

By contrast, the term path implies the result of a random experiment
that is different or unique from other results, but that may or may not be
independent.

The distinction between these terms is usually unimportant. It may, however,
be useful when applied to variance reduction techniques that attempt to
increase the efficiency of Monte Carlo simulation by inducing dependence
across sample paths. A classic example involves pair-wise dependence induced
by antithetic sampling, and applies to more sophisticated variance reduction
techniques, such as stratified sampling.

For more information, about antithetic sampling, see “Antithetic Sampling”
on page 15-83. For more information about stratified sampling, see
“User-Specified Random Number Generation: Stratified Sampling” on page
5-63.

5-3



5 Monte Carlo Simulation of Stochastic Differential Equations

NTRIALS, NPERIODS, and NSTEPS
SDE methods in the GARCH Toolbox™ software use the parameters NTRIALS,
NPERIODS, and NSTEPS as follows:

• The input argument NTRIALS specifies the number of simulated trials or
sample paths to generate. This argument always determines the size of
the third dimension (the number of pages) of the output 3-dimensional
time-series array Paths. Indeed, in a traditional Monte Carlo simulation
of one or more variables, each sample path is independent and represents
an independent trial.

• The parameters NPERIODS and NSTEPS represent the number of simulation
periods and time steps, respectively. Both periods and time steps are
related to time increments that determine the exact sequence of observed
sample times. The distinction between these terms applies only to issues of
accuracy and memory management. For more information, see “Optimizing
Accuracy of Solutions” on page 5-74 and “Managing Memory” on page 5-72.

5-4



Behavior and Syntax of SDE Objects

Behavior and Syntax of SDE Objects

In this section...

“Relationship Between SDE Models and Objects” on page 5-5

“Displaying Objects” on page 5-5

“Assigning and Referencing Object Parameters” on page 5-6

“Constructing and Evaluating Models” on page 5-6

Relationship Between SDE Models and Objects
Most models and utilities available with Monte Carlo Simulation of SDEs are
represented as MATLAB® objects. Therefore, this documentation often uses
the terms model and object interchangeably.

However, although all models are represented as objects, not all objects
represent models. In particular, drift and diffusion objects are used in model
specification, but neither of these types of objects in and of themselves makes
up a complete model. In most cases, you do not need to create drift and
diffusion objects directly, so you do not need to differentiate between objects
and models. It is important, however, to understand the distinction between
these terms.

In many of the following examples, most model parameters are evaluated
or invoked like any MATLAB function. Although it is helpful to examine
and access model parameters as you would data structures, think of these
parameters as functions that perform actions.

For more information about MATLAB objects, see “Using Objects to Write
Data to a File” in the MATLAB documentation.

Displaying Objects

• Objects display like traditional MATLAB data structures.

• Displayed object parameters appear as nouns that begin with capital
letters. In contrast, parameters such as simulate and interpolate appear
as verbs that begin with lowercase letters, which indicate tasks to perform.

5-5



5 Monte Carlo Simulation of Stochastic Differential Equations

Assigning and Referencing Object Parameters

• Objects support referencing similar to data structures. For example,
statements like the following are generally valid:

A = obj.A

• Objects support complete parameter assignment similar to data structures.
For example, statements like the following are generally valid:

obj.A = 3

• Objects do not support partial parameter assignment as data structures do.
Therefore, statements like the following are generally invalid:

obj.A(i,j) = 0.3

Constructing and Evaluating Models

• You can construct objects of any model class only if enough information is
available to determine unambiguously the dimensionality of the model.
Because various class constructors offer unique input interfaces, some
models require additional information to resolve model dimensionality.

• You need only enter required input parameters in placeholder format,
where a given input argument is associated with a specific position in an
argument list. You can enter optional inputs in any order as parameter
name-value pairs, where the name of a given parameter appears in single
quotation marks and precedes its corresponding value.

• Association of dynamic (time-variable) behavior with function evaluation,
where time and state (t,Xt) are passed to a common, published interface,
is pervasive throughout the SDE class system. You can use this function
evaluation approach to model or construct powerful analytics. For a simple
example, see “Example: Creating Univariate GBM Models” on page 5-24.

5-6



Parametric Specification

Parametric Specification

In this section...

“General Parametric Specification” on page 5-7

“General SDEs” on page 5-7

“Drift and Diffusion Specifications” on page 5-8

General Parametric Specification
The SDE engine allows the simulation of generalized multivariate stochastic
processes, and provides a flexible and powerful simulation architecture. The
framework also provides you with utilities and model classes that offer a
variety of parametric specifications and interfaces. The architecture is fully
multidimensional in both the state vector and the Brownian motion, and
offers both linear and mean-reverting drift-rate specifications.

You can specify most parameters as MATLAB® arrays or as functions
accessible by a common interface, that support general dynamic/nonlinear
relationships common in SDE simulation. Specifically, you can simulate
correlated paths of any number of state variables driven by a vector-valued
Brownian motion of arbitrary dimensionality. This simulation approximates
the underlying multivariate continuous-time process using a vector-valued
stochastic difference equation.

General SDEs
Consider the following general stochastic differential equation:

dX F t X dt G t X dWt t t t= +( , ) ( , ) (5-1)

where:

• X is an NVARS-by-1 state vector of process variables (for example, short
rates or equity prices) to simulate.

• W is an NBROWNS-by-1 Brownian motion vector.

• F is an NVARS-by-1 vector-valued drift-rate function.

5-7



5 Monte Carlo Simulation of Stochastic Differential Equations

• G is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

The drift and diffusion rates, F and G, respectively, are general functions
of a real-valued scalar sample time t and state vector Xt. Also, static
(non-time-variable) coefficients are simply a special case of the more general
dynamic (time-variable) situation, just as a function can be a trivial constant;
for example, f(t,Xt) = 4. The SDE in Equation 5-1 is useful in implementing
derived classes that impose additional structure on the drift and diffusion-rate
functions.

Drift and Diffusion Specifications
For example, an SDE with a linear drift rate has the form:

F t X A t B t Xt t( , ) ( ) ( )= + (5-2)

where A is an NVARS-by-1 vector-valued function and B is an
NVARS-by-NVARS matrix-valued function.

As an alternative, consider a drift-rate specification expressed in
mean-reverting form:

F t X S t L t Xt t( , ) ( )[ ( ) ]= − (5-3)

where S is an NVARS-by-NVARS matrix-valued function of mean reversion
speeds (that is, rates of mean reversion), and L is an NVARS-by-1
vector-valued function of mean reversion levels (that is, long run average
level).

Similarly, consider the following diffusion-rate specification:

G t X D t X V tt t
t( , ) ( , ) ( )( )= α (5-4)

where D is an NVARS-by-NVARS diagonal matrix-valued function. Each
diagonal element of D is the corresponding element of the state vector
raised to the corresponding element of an exponent Alpha, which is also
an NVARS-by-1 vector-valued function. V is an NVARS-by-NBROWNS
matrix-valued function of instantaneous volatility rates. Each row of V
corresponds to a particular state variable, and each column corresponds to

5-8



Parametric Specification

a particular Brownian source of uncertainty. V associates the exposure of
state variables with sources of risk.

The parametric specifications for the drift and diffusion-rate functions
associate parametric restrictions with familiar models derived from the
general SDE class, and provide coverage for many popular models.

As discussed in the following sections, the class system and hierarchy of
the SDE engine use industry-standard technology to provide simplified
interfaces for many models by placing user-transparent restrictions on drift
and diffusion specifications. This design allows you to mix and match existing
models, and customize drift or diffusion-rate functions.

For example, the following popular models are simply special cases of the
general SDE model.

Popular Models

Model Name Specification

Brownian Motion (BM)
dX A t dt V t dWt t= +( ) ( )

Geometric Brownian Motion
(GBM) dX B t X dt V t X dWt t t t= +( ) ( )

Constant Elasticity of Variance
(CEV) dX B t X dt V t X dWt t t

t
t= +( ) ( ) ( )α

5-9



5 Monte Carlo Simulation of Stochastic Differential Equations

Popular Models (Continued)

Model Name Specification

Cox-Ingersoll-Ross (CIR)

dX S t L t X dt V t X dWt t t t= − +( )( ( ) ) ( )
1
2

Hull-White/Vasicek (HWV)
dX S t L t X dt V t dWt t t= − +( )( ( ) ) ( )

5-10



Using SDE Objects to Create Models

Using SDE Objects to Create Models

In this section...

“SDE Classes” on page 5-11

“Creating Base SDE Objects” on page 5-14

“Creating Drift and Diffusion Objects” on page 5-16

“Creating Stochastic Differential Equations from Drift and Diffusion
Objects (SDEDDO)” on page 5-19

“Creating Stochastic Differential Equations from Linear Drift (SDELD)”
on page 5-20

“Creating Brownian Motion (BM) Models” on page 5-21

“Creating Constant Elasticity of Variance (CEV) Models” on page 5-22

“Creating Geometric Brownian Motion (GBM) Models” on page 5-23

“Creating Stochastic Differential Equations from Mean-Reverting Drift
(SDEMRD)” on page 5-24

“Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models” on page
5-25

“Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models” on page
5-26

SDE Classes

The SDE Class Hierarchy
The GARCH Toolbox™ SDE class structure represents a generalization and
specialization hierarchy. The top-level class provides the most general model
interface and offers the default Monte Carlo simulation and interpolation
methods. In turn, derived classes offer restricted interfaces that simplify
model creation and manipulation while providing detail regarding model
structure.

The following table lists the SDE classes. The introductory examples in
the accompanying sections show how to use these classes to create objects
associated with univariate models. Although the GARCH Toolbox SDE engine

5-11



5 Monte Carlo Simulation of Stochastic Differential Equations

supports multivariate models, univariate models facilitate object creation and
display, and allow you to easily associate inputs with object parameters.

SDE Classes

Class Name For More Information, See ...

SDE “Creating Base SDE Objects” on page
5-14

Drift, Diffusion “Creating Drift and Diffusion Objects” on
page 5-16

SDEDDO “Creating Stochastic Differential
Equations from Drift and Diffusion
Objects (SDEDDO)” on page 5-19

SDELD “Creating Stochastic Differential
Equations from Linear Drift (SDELD)”
on page 5-20

CEV “Creating Constant Elasticity of Variance
(CEV) Models” on page 5-22

BM “Creating Brownian Motion (BM)
Models” on page 5-21

SDEMRD “Creating Stochastic Differential
Equations from Mean-Reverting Drift
(SDEMRD)” on page 5-24

GBM “Creating Geometric Brownian Motion
(GBM) Models” on page 5-23

HWV “Creating Hull-White/Vasicek (HWV)
Gaussian Diffusion Models” on page 5-26

CIR “Creating Cox-Ingersoll-Ross (CIR)
Square Root Diffusion Models” on page
5-25

The following figure illustrates the inheritance relationships among SDE
classes.

5-12



Using SDE Objects to Create Models

SDE Methods
The SDE class provides default simulation and interpolation methods for all
derived classes:

• simulate: High-level wrapper around the user-specified simulation method
stored in the Simulation method

• simByEuler: Default Euler approximation simulation method

• interpolate: Stochastic interpolation method (that is, Brownian bridge)

The HWV and GBM classes feature an additional method, simBySolution, that
simulates approximate solutions of diagonal-drift processes.

For more information, see Method Reference.

SDE Class Constructors
You use class constructors to create SDE objects. The following sections
include examples of how to do this.

5-13



5 Monte Carlo Simulation of Stochastic Differential Equations

For more information, see “Stochastic Differential Equation (SDE) Class
Constructors” on page 14-3.

Creating Base SDE Objects

About Base SDE Models
The base SDE class:

dX F t X dt G t X dWt t t t= +( , ) ( , )

represents the most general model.

Tip The SDE class is not an abstract class. You can instantiate SDE objects
directly to extend the set of core models.

Constructing an SDE object requires two inputs:

• A drift-rate function F. F returns an NVARS-by-1 drift-rate vector when run
with the following inputs:

- A real-valued scalar observation time t.

- An NVARS-by-1 state vector Xt.

• A diffusion-rate function G. G returns an NVARS-by-NBROWNS diffusion-rate
matrix when run with the inputs t and Xt.

Evaluating object parameters by passing (t, Xt) to a common, published
interface allows most parameters to be referenced by a common input
argument list that reinforces common method programming. You can use this
simple function evaluation approach to model or construct powerful analytics,
as in the following example.

Example: Creating Base SDE Models
Construct an SDE object obj to represent a univariate geometric Brownian
Motion model of the form:

5-14



Using SDE Objects to Create Models

dX X dt X dWt t t t= +0 1 0 3. . (5-5)

1 Create drift and diffusion functions that are accessible by the common
(t,Xt) interface:

F = @(t,X) 0.1 * X;
G = @(t,X) 0.3 * X;

2 Pass the functions to the SDE constructor to create an object obj of class SDE:

obj = sde(F, G) % dX = F(t,X)dt + G(t,X)dW
obj =

Class SDE: Stochastic Differential Equation
-------------------------------------------

Dimensions: State = 1, Brownian = 1
-------------------------------------------

StartTime: 0
StartState: 1

Correlation: 1
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

obj displays like a MATLAB® structure, with the following information:

• The object’s class

• A brief description of the object

• A summary of the dimensionality of the model

The object’s displayed parameters are as follows:

• StartTime: The initial observation time (real-valued scalar)

• StartState: The initial state vector (NVARS-by-1 column vector)

• Correlation: The correlation structure between Brownian process

• Drift: The drift-rate function F(t,Xt)

• Diffusion: The diffusion-rate function G(t,Xt)

• Simulation: The simulation method or function.

5-15



5 Monte Carlo Simulation of Stochastic Differential Equations

Of these displayed parameters, only Drift and Diffusion are required inputs.

The only exception to the (t, Xt) evaluation interface is Correlation.
Specifically, when you enter Correlation as a function, the SDE engine
assumes that it is a deterministic function of time, C(t). This restriction on
Correlation as a deterministic function of time allows Cholesky factors to
be computed and stored before the formal simulation. This inconsistency
dramatically improves run-time performance for dynamic correlation
structures. If Correlation is stochastic, you can also include it within the
simulation architecture as part of a more general random number generation
function.

Specifying Object Parameters and Simulation Inputs
The class-naming conventions introduced here, discussed in more detail
in subsequent sections, are meant to be meaningful. When you specify
object parameters or simulation inputs as functions, the object assumes no
knowledge of implementation details. A given function is required only to
evaluate properly when you pass time and state to it.

Creating Drift and Diffusion Objects

About Drift and Diffusion Objects
Because base-level SDE objects accept drift and diffusion objects in lieu of
functions accessible by (t, Xt), you can create SDE objects with combinations of
customized drift or diffusion functions and objects. The drift and diffusion
rate classes encapsulate the details of input parameters to optimize run-time
efficiency for any given combination of classes.

Although drift and diffusion objects differ in the details of their
representation, they are identical in their basic implementation and interface.
They look, feel like, and are evaluated as functions:

• The drift class allows you to create drift-rate objects of the form:

F t X A t B t Xt t( , ) ( ) ( )= +

where:

5-16



Using SDE Objects to Create Models

- A is an NVARS-by-1 vector-valued function accessible using the (t, Xt)
interface.

- B is an NVARS-by-NVARS matrix-valued function accessible using the (t,
Xt) interface.

• Similarly, the diffusion class allows you to create diffusion-rate objects:

G t X D t X V tt t
t( , ) ( , ) ( )( )= α

where:

- D is an NVARS-by-NVARS diagonal matrix-valued function.

- Each diagonal element of D is the corresponding element of the state
vector raised to the corresponding element of an exponent Alpha, which
is an NVARS-by-1 vector-valued function.

- V is an NVARS-by-NBROWNS matrix-valued volatility rate function Sigma.

- Alpha and Sigma are also accessible using the (t, Xt) interface.

Note You can express drift and diffusion classes in the most general
form to emphasize the functional (t, Xt) interface. However, you can specify
the components A and B as functions that adhere to the common (t, Xt)
interface, or as MATLAB arrays of appropriate dimension.

Example: Creating Drift and Diffusion Rate Objects as Model
Inputs
In this example, you create drift and diffusion rate objects to create the
same model as in “Example: Creating Base SDE Models” on page 5-14.

Create a drift-rate function F and a diffusion-rate function G:

F = drift(0, 0.1) % Drift rate function F(t,X)
G = diffusion(1, 0.3) % Diffusion rate function G(t,X)
F =

Class DRIFT: Drift Rate Specification
-------------------------------------

Rate: drift rate function F(t,X(t))

5-17



5 Monte Carlo Simulation of Stochastic Differential Equations

A: 0
B: 0.1

G =
Class DIFFUSION: Diffusion Rate Specification
---------------------------------------------

Rate: diffusion rate function G(t,X(t))
Alpha: 1
Sigma: 0.3

Each object displays like a MATLAB structure and contains supplemental
information, namely, the object’s class and a brief description. However, in
contrast to the SDE representation, a summary of the dimensionality of the
model does not appear, because drift and diffusion classes create model
components rather than models. Neither F nor G contains enough information
to characterize the dimensionality of a problem.

The drift object’s displayed parameters are:

• Rate: The drift-rate function, F(t,Xt)

• A: The intercept term, A(t,Xt), of F(t,Xt)

• B: The first order term, B(t,Xt), of F(t,Xt)

A and B enable you to query the original inputs. The function stored in Rate
fully encapsulates the combined effect of A and B.

The diffusion object’s displayed parameters are:

• Rate: The diffusion-rate function, G(t,Xt).

• Alpha: The state vector exponent, which determines the format of D(t,Xt) of
G(t,Xt).

• Sigma: The volatility rate, V(t,Xt), of G(t,Xt).

Again, Alpha and Sigma enable you to query the original inputs. (The
combined effect of the individual Alpha and Sigma parameters is fully
encapsulated by the function stored in Rate.) The Rate functions are the
calculation engines for the drift and diffusion objects, and are the only
parameters required for simulation.

5-18



Using SDE Objects to Create Models

Creating Stochastic Differential Equations from Drift
and Diffusion Objects (SDEDDO)

About SDEDDO Models
The SDEDDO class derives from the base SDE class. To use this class, you must
pass drift and diffusion-rate objects to the SDEDDO constructor.

Example: Creating SDEDDO Models
1 Create drift and diffusion rate objects:

F = drift(0, 0.1); % Drift rate function F(t,X)
G = diffusion(1, 0.3); % Diffusion rate function G(t,X)

2 Pass these objects to the SDEDDO constructor:

obj = sdeddo(F, G) % dX = F(t,X)dt + G(t,X)dW
obj =

Class SDEDDO: SDE from Drift and Diffusion Objects
--------------------------------------------------

Dimensions: State = 1, Brownian = 1
--------------------------------------------------

StartTime: 0
StartState: 1

Correlation: 1
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

A: 0
B: 0.1

Alpha: 1
Sigma: 0.3

In this example, the object displays the additional parameters associated
with input drift and diffusion objects.

5-19



5 Monte Carlo Simulation of Stochastic Differential Equations

Creating Stochastic Differential Equations from Linear
Drift (SDELD)

About SDELD Models
The SDELD class derives from the SDEDDO class. These objects allow you
to simulate correlated paths of NVARS state variables expressed in linear
drift-rate form:

dX A t B t X dt D t X V t dWt t t
t

t= + +( ( ) ( ) ) ( , ) ( )( )α (5-6)

SDELD objects provide a parametric alternative to the mean-reverting drift
form, as discussed in “Example: Creating SDEMRD Models” on page 5-25.
They also provide an alternative interface to the SDEDDO parent class,
because you can create an object without first having to create its drift and
diffusion-rate components.

Example: Creating SDELD Models
Create the same model as in “Example: Creating Base SDE Models” on page
5-14:

obj = sdeld(0, 0.1, 1, 0.3) % (A, B, Alpha, Sigma)
obj =

Class SDELD: SDE with Linear Drift
----------------------------------------

Dimensions: State = 1, Brownian = 1
----------------------------------------

StartTime: 0
StartState: 1

Correlation: 1
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

A: 0
B: 0.1

Alpha: 1
Sigma: 0.3

5-20



Using SDE Objects to Create Models

Creating Brownian Motion (BM) Models

About BM Models
The Brownian Motion (BM) model derives directly from the linear drift (SDELD)
class:

dX t dt V t dWt t= +μ( ) ( ) (5-7)

Example: Creating BM Models
Create a univariate Brownian motion (BM) object to represent the model:

dX dWt t= 0 3.

obj = bm(0, 0.3) % (A = Mu, Sigma)
obj =

Class BM: Brownian Motion
----------------------------------------

Dimensions: State = 1, Brownian = 1
----------------------------------------

StartTime: 0
StartState: 0

Correlation: 1
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

Mu: 0
Sigma: 0.3

BM objects display the parameter A as the more familiar Mu.

The BM class also provides an overloaded Euler simulation method that
improves run-time performance in certain common situations. Use the
specialized method only if all of the following conditions are met:

• The expected drift, or trend, rate Mu is a column vector.

• The volatility rate, Sigma, is a matrix.

• No end-of-period adjustments and/or processes are made.

5-21



5 Monte Carlo Simulation of Stochastic Differential Equations

• If specified, the random noise process Z is a 3-dimensional array.

• If Z is unspecified, the assumed Gaussian correlation structure is a double
matrix.

Creating Constant Elasticity of Variance (CEV) Models

About CEV Models
The Constant Elasticity of Variance (CEV) model also derives directly from
the linear drift (SDELD) class:

dX t X dt D t X V t dWt t t
t

t= +μ α( ) ( , ) ( )( ) (5-8)

The CEV class constrains A to an NVARS-by-1 vector of zeros. D is an
unrestricted diagonal matrix whose elements are the corresponding element
of the state vector X, raised to an exponent alpha.

Example: Creating Univariate CEV Models
Create a univariate CEV object to represent the model:

dX X X dWt t t t= +0 25 0 3
1
2. .

obj = cev(0.25, 0.5, 0.3) % (B = Return, Alpha, Sigma)
obj =

Class CEV: Constant Elasticity of Variance
------------------------------------------

Dimensions: State = 1, Brownian = 1
------------------------------------------

StartTime: 0
StartState: 1

Correlation: 1
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

Return: 0.25
Alpha: 0.5
Sigma: 0.3

5-22



Using SDE Objects to Create Models

CEV and GBM objects display the parameter B as the more familiar Return.

Creating Geometric Brownian Motion (GBM) Models

About GBM Models
The Geometric Brownian Motion (GBM) model derives directly from the CEV
model:

dX t X dt D t X V t dWt t t t= +μ( ) ( , ) ( ) (5-9)

Compared to CEV, GBM constrains all elements of the alpha exponent vector
to one such that D is now a diagonal matrix with the state vector X along
the main diagonal.

The GBM class also provides two simulation methods that can be used by
separable models:

• An overloaded Euler simulation method that improves run-time
performance in certain common situations. You can use this specialized
method only if all of the following conditions are true:

- The expected rate of return (Return) is a diagonal matrix.

- The volatility rate (Sigma) is a matrix.

- No end-of-period adjustments/processes are made.

- If specified, the random noise process Z is a 3-dimensional array.

- If Z is unspecified, the assumed Gaussian correlation structure is a
double matrix.

• An approximate analytic solution (simBySolution) obtained by applying
an Euler approach to the transformed (using Ito’s formula) logarithmic
process. In general, this is not the exact solution to this GBM model, as
the probability distributions of the simulated and true state vectors are
identical only for piece-wise constant parameters. If the model parameters
are piece-wise constant over each observation period, the state vector

5-23



5 Monte Carlo Simulation of Stochastic Differential Equations

Xt is log-normally distributed and the simulated process is exact for the
observation times at which Xt is sampled.

Example: Creating Univariate GBM Models
Create a univariate GBM object to represent the model:

dX X dt X dWt t t t= +0 25 0 3. .

obj = gbm(0.25, 0.3) % (B = Return, Sigma)
obj =

Class GBM: Generalized Geometric Brownian Motion
------------------------------------------------

Dimensions: State = 1, Brownian = 1
------------------------------------------------

StartTime: 0
StartState: 1

Correlation: 1
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

Return: 0.25
Sigma: 0.3

Creating Stochastic Differential Equations from
Mean-Reverting Drift (SDEMRD)

About SDEMRD Models
The SDEMRD class derives directly from the SDEDDO class. It provides an
interface in which the drift-rate function is expressed in mean-reverting drift
form:

dX S t L t X dt D t X V t dWt t t
t

t= − +( )[ ( ) ] ( , ) ( )( )α (5-10)

SDEMRD objects provide a parametric alternative to the linear drift form by
reparameterizing the general linear drift such that:

A t S t L t B t S t( ) ( ) ( ), ( ) ( )= = −

5-24



Using SDE Objects to Create Models

Example: Creating SDEMRD Models
Create an SDEMRD object obj with a square root exponent to represent the
model:

dX X dt X dWt t t t= − +0 2 0 1 0 05
1
2. ( . ) .

obj = sdemrd(0.2, 0.1, 0.5, 0.05) % (Speed, Level, Alpha, Sigma)
obj =

Class SDEMRD: SDE with Mean-Reverting Drift
-------------------------------------------

Dimensions: State = 1, Brownian = 1
-------------------------------------------

StartTime: 0
StartState: 1

Correlation: 1
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

Alpha: 0.5
Sigma: 0.05
Level: 0.1
Speed: 0.2

SDEMRD objects display the familiar Speed and Level parameters instead of
A and B.

Creating Cox-Ingersoll-Ross (CIR) Square Root
Diffusion Models

About CIR Models
The Cox-Ingersoll-Ross (CIR) short rate class derives directly from SDE with
mean-reverting drift (SDEMRD):

5-25



5 Monte Carlo Simulation of Stochastic Differential Equations

dX S t L t X dt D t X V t dWt t t t= − +( )[ ( ) ] ( , ) ( )
1
2 (5-11)

where D is a diagonal matrix whose elements are the square root of the
corresponding element of the state vector.

Example: Creating CIR Models
Create a CIR object to represent the same model as in “Example: Creating
SDEMRD Models” on page 5-25:

obj = cir(0.2, 0.1, 0.05) % (Speed, Level, Sigma)
obj =

Class CIR: Cox-Ingersoll-Ross
----------------------------------------

Dimensions: State = 1, Brownian = 1
----------------------------------------

StartTime: 0
StartState: 1

Correlation: 1
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

Sigma: 0.05
Level: 0.1
Speed: 0.2

Although the last two objects are of different classes, they represent the
same mathematical model. They differ in that you create the CIR object by
specifying only three input arguments. This distinction is reinforced by the
fact that the Alpha parameter does not display – it is defined to be 1/2.

Creating Hull-White/Vasicek (HWV) Gaussian
Diffusion Models

About HWV Models
The Hull-White/Vasicek (HWV) short rate class derives directly from SDE with
mean-reverting drift (SDEMRD):

5-26



Using SDE Objects to Create Models

dX S t L t X dt V t dWt t t= − +( )[ ( ) ] ( ) (5-12)

Example: Creating HWV Models
Using the same parameters as in the previous example, create an HWV object
to represent the model:

dX X dt dWt t t= − +0 2 0 1 0 05. ( . ) .

obj = hwv(0.2, 0.1, 0.05) % (Speed, Level, Sigma)
obj =

Class HWV: Hull-White/Vasicek
----------------------------------------

Dimensions: State = 1, Brownian = 1
----------------------------------------

StartTime: 0
StartState: 1

Correlation: 1
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

Sigma: 0.05
Level: 0.1
Speed: 0.2

CIR and HWV constructors share the same interface and display methods. The
only distinction is that CIR and HWV models constrain Alpha exponents to 1/2
and 0, respectively. Furthermore, the HWV class also provides an additional
method that simulates approximate analytic solutions (simBySolution)
of separable models. This method simulates the state vector Xt using an
approximation of the closed-form solution of diagonal drift HWV models. Each
element of the state vector Xt is expressed as the sum of NBROWNS correlated
Gaussian random draws added to a deterministic time-variable drift.

When evaluating expressions, all model parameters are assumed piece-wise
constant over each simulation period. In general, this is not the exact solution
to this HWV model, because the probability distributions of the simulated and
true state vectors are identical only for piece-wise constant parameters. If
S(t,Xt), L(t,Xt), and V(t,Xt) are piece-wise constant over each observation

5-27



5 Monte Carlo Simulation of Stochastic Differential Equations

period, the state vector Xt is normally distributed, and the simulated process
is exact for the observation times at which Xt is sampled.

Hull-White vs. Vasicek Models
Many references differentiate between Vasicek models and Hull-White models.
Where such distinctions are made, Vasicek parameters are constrained to be
constants, while Hull-White parameters vary deterministically with time.
Think of Vasicek models in this context as constant-coefficient Hull-White
models and equivalently, Hull-White models as time-varying Vasicek models.
However, from an architectural perspective, the distinction between static
and dynamic parameters is trivial. Since both models share the same
general parametric specification as previously described, a single HWV class
encompasses the models.

5-28



Solving Problems with SDE Models

Solving Problems with SDE Models

In this section...

“Implementing Multidimensional Equity Market Models” on page 5-29

“Stochastic Interpolation and the Brownian Bridge” on page 5-42

“Inducing Dependence and Correlation” on page 5-48

“Incorporating Dynamic Behavior” on page 5-51

“End-of-Period Processes” on page 5-57

“User-Specified Random Number Generation: Stratified Sampling” on page
5-63

Implementing Multidimensional Equity Market
Models
This example compares alternative implementations of a separable
multivariate geometric Brownian motion process that is often referred to as a
multidimensional market model. It simulates sample paths of an equity index
portfolio using SDE, SDEDDO, SDELD, CEV, and GBM objects.

The market model to simulate is:

dX X dt D X dWt t t t= +μ σ( ) (5-13)

where:

• μ is a diagonal matrix of index returns.

• D is a diagonal matrix with Xt along the diagonal.

• σ is a diagonal matrix of index standard deviation.

Implementation 1: Using SDE Objects
Create an SDE object to represent the equity market model.

1 Load the SDE_Data data set:

load SDE_Data

5-29



5 Monte Carlo Simulation of Stochastic Differential Equations

SDE_Data =
Dates: [1359x1 double]

Canada: [1359x1 double]
France: [1359x1 double]

Germany: [1359x1 double]
Japan: [1359x1 double]

UK: [1359x1 double]
US: [1359x1 double]

Euribor3M: [1359x1 double]

prices = [SDE_Data.Canada SDE_Data.France SDE_Data.Germany ...
SDE_Data.Japan SDE_Data.UK SDE_Data.US];

2 Convert daily prices to returns:

returns = price2ret(prices);

3 Compute data statistics to input to simulation methods:

nVariables = size(returns, 2);
expReturn = mean(returns);
sigma = std(returns);
correlation = corrcoef(returns);
covariance = cov(returns);
t = 0;
X = 100;
X = X(ones(nVariables,1));

4 Create simple anonymous drift and diffusion functions accessible by (t, Xt):

F = @(t,X) diag(expReturn) * X;
G = @(t,X) diag(X) * diag(sigma);

5 Use these functions to create an SDE object to represent the market model
in Equation 5-13:

SDE = sde(F, G, 'Correlation', correlation, 'StartState', X)
SDE =

Class SDE: Stochastic Differential Equation
-------------------------------------------

Dimensions: State = 6, Brownian = 6

5-30



Solving Problems with SDE Models

-------------------------------------------
StartTime: 0

StartState: 100 (6x1 double array)
Correlation: 6x6 double array

Drift: drift rate function F(t,X(t))
Diffusion: diffusion rate function G(t,X(t))

Simulation: simulation method/function simByEuler

The SDE constructor requires additional information to determine the
dimensionality of the model, because the functions passed to the SDE
constructor are known only by their (t, Xt) interface. In other words,
the SDE constructor requires only two inputs: a drift-rate function and a
diffusion-rate function, both accessible by passing the sample time and the
corresponding state vector (t, Xt).

In this case, this information is insufficient to determine unambiguously
the dimensionality of the state vector and Brownian motion. You resolve
the dimensionality by specifying an initial state vector, StartState.
Note that the SDE engine has assigned the default simulation method,
simByEuler, to the Simulation parameter.

Implementation 2: Using SDEDDO Objects
Create an SDEDDO object to represent the market model in Equation 5-13:

1 Create drift and diffusion objects:

F = drift(zeros(nVariables,1), diag(expReturn))
F =

Class DRIFT: Drift Rate Specification
-------------------------------------

Rate: drift rate function F(t,X(t))
A: 6x1 double array
B: 6x6 diagonal double array

G = diffusion(ones(nVariables,1), diag(sigma))
G =

Class DIFFUSION: Diffusion Rate Specification
---------------------------------------------

Rate: diffusion rate function G(t,X(t))

5-31



5 Monte Carlo Simulation of Stochastic Differential Equations

Alpha: 6x1 double array
Sigma: 6x6 diagonal double array

2 Pass the drift and diffusion objects to the SDEDDO constructor:

SDEDDO = sdeddo(F, G, 'Correlation', correlation, ...
'StartState', 100)

SDEDDO =
Class SDEDDO: SDE from Drift and Diffusion Objects
--------------------------------------------------

Dimensions: State = 6, Brownian = 6
--------------------------------------------------

StartTime: 0
StartState: 100 (6x1 double array)

Correlation: 6x6 double array
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

A: 6x1 double array
B: 6x6 diagonal double array

Alpha: 6x1 double array
Sigma: 6x6 diagonal double array

The SDEDDO constructor requires two input objects that provide more
information than the two functions from step 4 of “Implementation 1:
Using SDE Objects” on page 5-29. Thus, the dimensionality is more easily
resolved. In fact, the initial price of each index is as a scalar (StartState =
100). This is in contrast to the SDE constructor, which required an explicit
state vector to uniquely determine the dimensionality of the problem.

Once again, the class of each object is clearly identified, and parameters
display like fields of a structure. In particular, the Rate parameter of
drift and diffusion objects is identified as a callable function of time and
state, F(t,Xt) and G(t,Xt), respectively. The additional parameters, A, B,
Alpha, and Sigma, are arrays of appropriate dimension, indicating static
(non-time-varying) parameters. In other words, A(t,Xt), B(t,Xt), Alpha(t,Xt),
and Sigma(t,Xt) are constant functions of time and state.

5-32



Solving Problems with SDE Models

Implementation 3: Using SDELD, CEV, and GBM Objects
Create SDELD, CEV, and GBM objects to represent the market model in Equation
5-13.

1 Create an SDELD object:

SDELD = sdeld(zeros(nVariables,1), diag(expReturn), ...
ones(nVariables,1), diag(sigma),'Correlation', ...
correlation, 'StartState', X)

SDELD =
Class SDELD: SDE with Linear Drift
----------------------------------------

Dimensions: State = 6, Brownian = 6
----------------------------------------

StartTime: 0
StartState: 100 (6x1 double array)

Correlation: 6x6 double array
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

A: 6x1 double array
B: 6x6 diagonal double array

Alpha: 6x1 double array
Sigma: 6x6 diagonal double array

2 Create a CEV object:

CEV = cev(diag(expReturn), ones(nVariables,1), ...
diag(sigma), 'Correlation', correlation, ...
'StartState', X)

CEV =
Class CEV: Constant Elasticity of Variance
------------------------------------------

Dimensions: State = 6, Brownian = 6
------------------------------------------

StartTime: 0
StartState: 100 (6x1 double array)

Correlation: 6x6 double array
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))

5-33



5 Monte Carlo Simulation of Stochastic Differential Equations

Simulation: simulation method/function simByEuler
Return: 6x6 diagonal double array
Alpha: 6x1 double array
Sigma: 6x6 diagonal double array

3 Create a GBM object:

GBM = gbm(diag(expReturn), diag(sigma), 'Correlation', ...
correlation, 'StartState', X)

GBM =
Class GBM: Generalized Geometric Brownian Motion
------------------------------------------------

Dimensions: State = 6, Brownian = 6
------------------------------------------------

StartTime: 0
StartState: 100 (6x1 double array)

Correlation: 6x6 double array
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

Return: 6x6 diagonal double array
Sigma: 6x6 diagonal double array

Note the succession of interface restrictions:

• SDELD objects require you to specify A, B, Alpha, and Sigma.

• CEV objects require you to specify Return, Alpha, and Sigma.

• GBM objects require you to specify only Return and Sigma.
However, all three objects represent the same multidimensional market
model.

Also, CEV and GBM objects display the underlying parameter B derived from
the SDELD class as Return. This is an intuitive name commonly associated
with equity models.

Implementation 4: Using the Default Simulate Method
Simulate a single path of correlated equity index prices over one calendar
year (defined as approximately 250 trading days) using the default simulate
method:

5-34



Solving Problems with SDE Models

nPeriods = 249; % # of simulated observations
dt = 1; % time increment = 1 day
randn('state', 100)
[S,T] = SDE.simulate(nPeriods, 'DeltaTime', dt);

The output array S is a 250-by-6 = (NPERIODS + 1)-by-nVariables-by-1
array with the same initial value, 100, for all indices. Each row of S is an
observation of the state vector Xt at time t.

whos S
Name Size Bytes Class Attributes
S 250x6 12000 double

plot(T, S), xlabel('Trading Day'), ylabel('Price')
title('Single Path of Multi-Dimensional Market Model')
legend({'Canada' 'France' 'Germany' 'Japan' 'UK' 'US'}, ...

'Location', 'Best')

5-35



5 Monte Carlo Simulation of Stochastic Differential Equations

Implementation 5: Using the SimByEuler Method

1 Because simByEuler is a valid simulation method, you can call it directly,
overriding the Simulation parameter’s current method or function (which
in this case is simByEuler). The following statements produce the same
price paths as generated in “Implementation 4: Using the Default Simulate
Method” on page 5-34:

randn('state', 100)
[S,T] = SDE.simByEuler(nPeriods, 'DeltaTime', dt);

2 Simulate 10 trials with the same initial conditions:

randn('state', 100)
[S,T] = SDE.simulate(nPeriods, 'DeltaTime', dt, 'nTrials', 10);

5-36



Solving Problems with SDE Models

Now the output array S is an (NPERIODS + 1)-by-nVariables-by-nTrials
time-series array:

whos S
Name Size Bytes Class Attributes
S 250x6x10 120000 double

whose first realization is identical to the single paths just plotted:

plot(T, S(:,:,1)), xlabel('Trading Day'), ylabel('Price')
title('First Path of Multi-Dimensional Market Model')
legend({'Canada' 'France' 'Germany' 'Japan' 'UK' 'US'},...

'Location', 'Best')

5-37



5 Monte Carlo Simulation of Stochastic Differential Equations

Implementation 6: Using GBM Simulation Methods
Finally, consider simulation using GBM simulation methods. Separable GBM
models have two specific simulation methods:

• An overloaded Euler simulation method, designed for optimal performance

• A method that provides an approximate solution of the underlying
stochastic differential equation, designed for accuracy

1 To illustrate the performance benefit of the overloaded Euler approximation
method, increase the number of trials to 10000:

randn('state', 100)
[X,T] = GBM.simulate(nPeriods, 'DeltaTime', dt, ...

'nTrials', 10000);

The output X is a much larger time-series array:

whos X
Name Size Bytes Class Attributes
X 250x6x10000 120000000 double

2 With this sample size, you can examine the terminal distribution of, for
example, Canada’s TSX Composite to verify qualitatively the log-normal
character of the data:

hist(X(end,1,:), 30), xlabel('Price'), ylabel('Frequency')
title('Histogram of Prices after One Year: ...
Canada (TSX Composite)')

5-38



Solving Problems with SDE Models

3 Simulate 10 trials of the solution and plot the first trial:

randn('state', 100)
[X,T] = GBM.simBySolution(nPeriods,...

'DeltaTime', dt, 'nTrials', 10);
subplot(2,1,1)
plot(T, S(:,:,1)), xlabel('Trading Day'),...

ylabel('Price')
title('First Path of Multi-Dimensional Market Model: ...

Euler Approximation')
subplot(2,1,2)
plot(T, X(:,:,1)), xlabel('Trading Day'),...

ylabel('Price')
title('First Path of Multi-Dimensional Market Model:...

Analytic Solution')

5-39



5 Monte Carlo Simulation of Stochastic Differential Equations

In this example, all parameters are constants, and simBySolution does
indeed sample the exact solution. The details of a single index for any given
trial show that the price paths of the Euler approximation and the exact
solution are close, but not identical.

The following plot illustrates the difference between the two methods:

subplot(1,1,1)
plot(T, S(:,1,1) - X(:,1,1), 'blue'), grid('on')
xlabel('Trading Day'), ylabel('Price Difference')
title('Euler Approximation Minus Exact Solution:...

Canada (TSX Composite)')

5-40



Solving Problems with SDE Models

The simByEuler Euler approximation literally evaluates the stochastic
differential equation directly from the equation of motion, for some suitable
value of the dt time increment. This simple approximation suffers from
discretization error. This error can be attributed to the discrepancy between
the choice of the dt time increment and what in theory is a continuous-time
parameter.

The discrete-time approximation improves as DeltaTime approaches zero.
The Euler method is often the least accurate and most general method
available. All models shipped in the simulation suite have this method.

In contrast, the simBySolution method provides a more accurate description
of the underlying model. This method simulates the price paths by an
approximation of the closed-form solution of separable models. Specifically,
it applies an Euler approach to a transformed process, which in general is

5-41



5 Monte Carlo Simulation of Stochastic Differential Equations

not the exact solution to this GBM model. This is because the probability
distributions of the simulated and true state vectors are identical only for
piece-wise constant parameters.

When all model parameters are piece-wise constant over each observation
period, the simulated process is exact for the observation times at which the
state vector is sampled. Since all parameters are constants in this example,
simBySolution does indeed sample the exact solution.

For an example of how to use simBySolution to optimize the accuracy of
solutions, see “Optimizing Accuracy of Solutions” on page 5-74.

Stochastic Interpolation and the Brownian Bridge
All simulation methods require that you specify a time grid by specifying
the number of periods (NPERIODS). You can also optionally specify a scalar
or vector of strictly positive time increments (DeltaTime) and intermediate
time steps (NSTEPS). These parameters, along with an initial sample time
associated with the object (StartTime), uniquely determine the sequence of
times at which the state vector is sampled. Thus, simulation methods allow
you to traverse the time grid from beginning to end (that is, from left to right).

In contrast, interpolation methods allow you to traverse the time grid in any
order, allowing both forward and backward movements in time. They allow
you to specify a vector of interpolation times whose elements do not have
to be unique.

Many references define the Brownian Bridge as a conditional simulation
combined with a scheme for traversing the time grid, effectively merging
two distinct algorithms. In contrast, the interpolation method offered here
provides additional flexibility by intentionally separating the algorithms. In
this method for moving about a time grid, you perform an initial Monte Carlo
simulation to sample the state at the terminal time, and then successively
sample intermediate states by stochastic interpolation. The first few samples
determine the overall behavior of the paths, while later samples progressively
refine the structure. Such algorithms are often called variance reduction
techniques. This algorithm is particularly simple when the number of
interpolation times is a power of 2. In this case, each interpolation falls
midway between two known states, refining the interpolation using a method

5-42



Solving Problems with SDE Models

like bisection. This example highlights the flexibility of refined interpolation
by implementing this power-of-two algorithm.

1 Load a historical data set of three-month Euribor rates
(http://www.euribor.org/default.htm), observed daily, and
corresponding trading dates spanning the time interval from February 7,
2001 through April 24, 2006:

clear, clf
load SDE_Data
plot(SDE_Data.Dates, 100 * SDE_Data.Euribor3M)
datetick('x'), xlabel('Date'), ylabel('Daily Yield (%)')
title('3-Month Euribor as a Daily Effective Yield')

2 Now fit a simple univariate Vasicek model to the daily equivalent yields
of the three-month Euribor data:

5-43

http://www.euribor.org/default.htm


5 Monte Carlo Simulation of Stochastic Differential Equations

dX S L X dt dWt t t= − +( ) σ

Given initial conditions, the distribution of the short rate at some time T in
the future is Gaussian with mean:

E X X e L eT
ST ST( ) ( )= + −− −

0 1

and variance:

Var X e ST
ST( ) ( ) /= − −σ 2 1 2

To calibrate this simple short rate model, rewrite it in more familiar
regression format:

y xt t t= + +α β ε

where:

y dX SLdt Sdtt t= = = −, ,α β

perform an ordinary linear regression where the model volatility is
proportional to the standard error of the residuals:

α ε= Var dtt( ) /

yields = SDE_Data.Euribor3M;
regressors = [ones(length(yields) - 1, 1) yields(1:end-1)];
[coefficients, intervals, residuals] = ...

regress(diff(yields), regressors);
dt = 1; % time increment = 1 day
speed = -coefficients(2)/dt;
level = -coefficients(1)/coefficients(2);
sigma = std(residuals)/sqrt(dt);

3 Create an HWV object with an initial StartState set to the most recently
observed short rate:

obj = hwv(speed, level, sigma, 'StartState', yields(end))
obj =

5-44



Solving Problems with SDE Models

Class HWV: Hull-White/Vasicek
----------------------------------------

Dimensions: State = 1, Brownian = 1
----------------------------------------

StartTime: 0
StartState: 7.70408e-005

Correlation: 1
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

Sigma: 4.77637e-007
Level: 6.00424e-005
Speed: 0.00228854

4 Assume, for example, that you simulate the fitted model over 64 (26)
trading days, using a refined Brownian bridge with the power-of-two
algorithm instead of the usual beginning-to-end Monte Carlo simulation
approach. Furthermore, assume that the initial time and state coincide
with those of the last available observation of the historical data, and that
the terminal state is the expected value of the Vasicek model 64 days into
the future. In this case, you can assess the behavior of various paths that
all share the same initial and terminal states, perhaps to support pricing
path-dependent interest rate options over a three-month interval.

Create a vector of interpolation times to traverse the time grid by moving
both forward and backward in time. Specifically, the first interpolation
time is set to the most recent short rate observation time, the second
interpolation time is set to the terminal time, and subsequent interpolation
times successively sample intermediate states:

T = 64;
times = (1:T)';
t = NaN(length(times) + 1, 1);
t(1) = obj.StartTime;
t(2) = T;
delta = T;
jMax = 1;
iCount = 3;

for k = 1:log2(T)

5-45



5 Monte Carlo Simulation of Stochastic Differential Equations

i = delta / 2;
for j = 1:jMax

t(iCount) = times(i);
i = i + delta;
iCount = iCount + 1;

end
jMax = 2 * jMax;
delta = delta / 2;

end

5 Examine the sequence of interpolation times generated by this algorithm:

stem(1:length(t), t, 'filled')
xlabel('Index'), ylabel('Interpolation Time (Days)')
title ('Sampling Scheme for the Power-of-Two Algorithm')

5-46



Solving Problems with SDE Models

The first few samples are widely separated in time and determine the
course structure of the paths. Later samples are closely spaced and
progressively refine the detailed structure.

6 Now that you have generated the sequence of interpolation times, initialize
a course time-series grid to begin the interpolation. The sampling process
begins at the last observed time and state taken from the historical short
rate series, and ends 64 days into the future at the expected value of the
Vasicek model derived from the calibrated parameters:

average = obj.StartState * exp(-speed * T) + ...
level * (1 - exp(-speed * T));

X = [obj.StartState ; average];

7 Generate 5 sample paths, setting the Refine input flag to TRUE to insert
each new interpolated state into the time series grid as it becomes
available. Perform interpolation on a trial-by-trial basis. Because the input
time series X has five trials (where each page of the 3-dimensional time
series represents an independent trial), the interpolated output series Y
also has five pages:

nTrials = 5;
randn('state', 0)
Y = obj.interpolate(t, X(:,:,ones(nTrials,1)), ...

'Times',[obj.StartTime T], 'Refine', true);

8 Plot the resulting sample paths. Because the interpolation times do not
monotonically increase, sort the times and reorder the corresponding short
rates:

[t,i] = sort(t);
Y = squeeze(Y);
Y = Y(i,:);
plot(t, 100 * Y), hold('on')
plot(t([1 end]), 100 * Y([1 end],1),'. black', ...

'MarkerSize', 20)
xlabel('Interpolation Time (Days into the Future)')
ylabel('Yield (%)'), hold('off')
title ('Euribor Yields Obtained by Brownian Bridge ...

Interpolation')

5-47



5 Monte Carlo Simulation of Stochastic Differential Equations

The short rates in this plot represent alternative sample paths that share
the same initial and terminal values. They illustrate a special, though
simplistic, case of a broader sampling technique known as stratified
sampling. For a more sophisticated example of stratified sampling, see
“User-Specified Random Number Generation: Stratified Sampling” on page
5-63.

Although this simple example simulated a univariate Vasicek interest rate
model, it applies to problems of any dimensionality.

Inducing Dependence and Correlation
This example illustrates two techniques that induce dependence between
individual elements of a state vector. It also illustrates the interaction
between Sigma and Correlation.

5-48



Solving Problems with SDE Models

The first technique generates correlated Gaussian variates to form a
Brownian motion process with dependent components. These components are
then weighted by a diagonal volatility or exposure matrix Sigma.

The second technique generates independent Gaussian variates to form a
standard Brownian motion process, which are then weighted by the lower
Cholesky factor of the desired covariance matrix. Although these techniques
can be used on many models, the relationship between them is most easily
illustrated by working with a separable GBM model (see “Implementing
Multidimensional Equity Market Models” on page 5-29). The market model to
simulate is:

dX X dt X dWt t t t= +μ σ

where μ is a diagonal matrix.

1 Load the SDE_Data data set:

load SDE_Data, SDE_Data
SDE_Data =

Dates: [1359x1 double]
Canada: [1359x1 double]
France: [1359x1 double]

Germany: [1359x1 double]
Japan: [1359x1 double]

UK: [1359x1 double]
US: [1359x1 double]

Euribor3M: [1359x1 double]

prices = [SDE_Data.Canada SDE_Data.France...
SDE_Data.Germany SDE_Data.Japan...
SDE_Data.UK SDE_Data.US];

2 Convert the daily prices to returns:

returns = price2ret(prices);

3 Specify Sigma and Correlation using the first technique:

a Using the first technique, specify Sigma as a diagonal matrix of asset
return standard deviations:

5-49



5 Monte Carlo Simulation of Stochastic Differential Equations

expReturn = diag(mean(returns)); % expected return vector
sigma = diag(std(returns)); % volatility of returns

b Specify Correlation as the sample correlation matrix of those returns.
In this case, the components of the Brownian motion are dependent:

correlation = corrcoef(returns);
GBM1 = gbm(expReturn, sigma, 'Correlation', ...

correlation);

4 Specify Sigma and Correlation using the second technique:

a Using the second technique, specify Sigma as the lower Cholesky factor
of the asset return covariance matrix:

covariance = cov(returns);
sigma = cholcov(covariance)';

b Set Correlation to an identity matrix:

GBM2 = gbm(expReturn, Sigma);

Here, Sigma captures both the correlation and magnitude of the asset
return uncertainty. In contrast to the first technique, the components
of the Brownian motion are independent. Also, this technique accepts
the default assignment of an identity matrix to Correlation, and is
more straightforward.

5 Simulate a single trial of 1000 observations (roughly four years of daily
data) using both techniques. By default, all state variables start at 1:

randn('state', 0)
[X1,T] = GBM1.simByEuler(1000); % correlated Brownian motion
randn('state', 0)
[X2,T] = GBM2.simByEuler(1000); % standard Brownian motion

6 When based on the same initial random number state, each technique
generates identical asset price paths:

subplot(2,1,1), plot(T, X1)
title('Correlated Sample Paths ...

from Correlated Brownian Motion')

5-50



Solving Problems with SDE Models

ylabel('Asset Price')
subplot(2,1,2), plot(T, X2)
title('Correlated Sample Paths ...

from Standard Brownian Motion')
xlabel('Trading Day'), ylabel('Asset Price')

Incorporating Dynamic Behavior
As previously discussed, object parameters may be evaluated as if they are
MATLAB® functions accessible by a common interface. This accessibility
provides the impression of dynamic behavior regardless of whether the
underlying parameters are truly time-varying. Furthermore, because
parameters are accessible by a common interface, seemingly simple linear
constructs may in fact represent complex, nonlinear designs.

5-51



5 Monte Carlo Simulation of Stochastic Differential Equations

For example, consider a univariate geometric Brownian motion (GBM) model
of the form:

dX t X dt t X dWt t t t= +μ σ( ) ( )

In this model, the return, μ(t), and volatility, σ(t), are generally dynamic
parameters of time alone. However, when creating a GBM object to represent
the underlying model, such dynamic behavior must be accessible by the
common (t, Xt) interface. This reflects the fact that GBM models (and others)
are restricted parameterizations that derive from the general SDE class.

As a convenience, you can specify parameters of restricted models, such as
GBM models, as traditional MATLAB arrays of appropriate dimension. In this
case, such arrays represent a static special case of the more general dynamic
situation accessible by the (t, Xt) interface.

Moreover, when you enter parameters as functions, object constructors can
verify that they return arrays of correct size by evaluating them at the initial
time and state. Otherwise, object constructors have no knowledge of any
particular functional form.

The following example illustrates a technique that includes dynamic behavior
by mapping a traditional MATLAB time-series array to a callable function
with a (t, Xt) interface. It also compares the function with an otherwise
identical model with constant parameters.

Because time-series arrays represent dynamic behavior that must be captured
by functions accessible by the (t, Xt) interface, you need utilities to convert
traditional time-series arrays into callable functions of time and state. The
following example shows how to do this using the conversion function ts2func
(time series to function).

1 Load a daily historical data set of 3-month Euribor rates and closing index
levels of France’s CAC 40 spanning the time interval February 7, 2001 to
April 24, 2006:

clear
load SDE_Data

5-52



Solving Problems with SDE Models

2 Simulate risk-neutral sample paths of the CAC 40 index using a geometric
Brownian motion (GBM) model:

dX r t X dt X dWt t t t= +( ) σ

where r(t) represents evolution of the risk-free rate of return.

Furthermore, assume that you need to annualize the relevant information
derived from the daily data (annualizing the data is optional, but is useful
for comparison to other examples), and that each calendar year comprises
250 trading days:

dt = 1 / 250;
returns = price2ret(SDE_Data.France);
sigma = std(returns) * sqrt(250);
yields = SDE_Data.Euribor3M;
yields = 360 * log(1 + yields);

3 Compare the resulting sample paths obtained from two risk-neutral
historical simulation approaches, where the daily Euribor yields serve as a
proxy for the risk-free rate of return.

a The first approach specifies the risk-neutral return as the sample average
of Euribor yields, and therefore assumes a constant (non-dynamic)
risk-free return:

nPeriods = length(yields); % Simulated observations

randn('state', 25)
obj = gbm(mean(yields), diag(sigma), 'StartState', 100)
[X1,T] = obj.simulate(nPeriods, 'DeltaTime', dt);

obj =
Class GBM: Generalized Geometric Brownian Motion
------------------------------------------------

Dimensions: State = 1, Brownian = 1
------------------------------------------------

StartTime: 0
StartState: 100
Correlation: 1
Drift: drift rate function F(t,X(t))

5-53



5 Monte Carlo Simulation of Stochastic Differential Equations

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler
Return: 0.0278117
Sigma: 0.231875

b In contrast, the second approach specifies the risk-neutral return
as the historical time series of Euribor yields. It therefore assumes
a dynamic, yet deterministic, rate of return; this example does not
illustrate stochastic interest rates. To illustrate this dynamic effect, use
the ts2func utility:

r = ts2func(yields, 'Times', (0:nPeriods - 1)');

ts2func packages a specified time series array inside a callable function
of time and state, and synchronizes it with an optional time vector. For
instance:

r(0,100)
ans =

0.0470

evaluates the function at (t = 0, X t = 100) and returns the first observed
Euribor yield. However, you can also evaluate the resulting function at
any intermediate time t and state Xt:

r(7.5,200)
ans =

0.0472

Furthermore, the following command produces the same result when
called with time alone:

r(7.5)
ans =

0.0472

The equivalence of these last two commands highlights some important
features.

When you specify parameters as functions, they must evaluate properly
when passed a scalar, real-valued sample time (t), and a NVARS-by-1

5-54



Solving Problems with SDE Models

state vector (Xt). They must also generate an array of appropriate
dimensions, which in the first case is a scalar constant, and in the second
case is a scalar, piece-wise constant function of time alone.

You are not required to use either time (t) or state (Xt). In the current
example, the function evaluates properly when passed time followed by
state, thereby satisfying the minimal requirements. The fact that it also
evaluates correctly when passed only time simply indicates that the
function does not require the state vector Xt. The important point to
make is that it works when you pass it (t, Xt).

Furthermore, the ts2func function performs a zero-order-hold (ZOH)
piece-wise constant interpolation. The notion of piece-wise constant
parameters is pervasive throughout the SDE architecture, and is
discussed in more detail in “Optimizing Accuracy of Solutions” on page
5-74.

4 Complete the comparison by performing the second simulation using the
same initial random number state:

randn('state', 25)
obj = gbm(r, diag(sigma), 'StartState', 100)
X2 = obj.simulate(nPeriods, 'DeltaTime', dt);

obj =
Class GBM: Generalized Geometric Brownian Motion
------------------------------------------------

Dimensions: State = 1, Brownian = 1
------------------------------------------------

StartTime: 0
StartState: 100

Correlation: 1
Drift: drift rate function F(t,X(t))

Diffusion: diffusion rate function G(t,X(t))
Simulation: simulation method/function simByEuler

Return: function ts2func/vector2Function
Sigma: 0.231875

5 Plot the series of risk-free reference rates to compare the two simulation
trials:

5-55



5 Monte Carlo Simulation of Stochastic Differential Equations

subplot(2,1,1)
plot(SDE_Data.Dates, 100 * yields)
datetick('x'), xlabel('Date'), ...

ylabel('Annualized Yield (%)')
title('Risk Free Rate ...

(3-Month Euribor Continuously-Compounded)')
subplot(2,1,2)
plot(T, X1, 'red', T, X2, 'blue')
xlabel('Time (Years)'), ylabel('Index Level')
title('Constant vs. Dynamic Rate of Return: CAC 40')
legend({'Constant Interest Rates'...
'Dynamic Interest Rates'}, 'Location', 'Best')

The paths are close but not exact. The blue line in the last plot uses all
the historical Euribor data, and illustrates a single trial of a historical
simulation.

5-56



Solving Problems with SDE Models

End-of-Period Processes

Ensuring Positive State Variables
All simulation and interpolation methods allow you to specify a sequence of
functions, or background processes, to evaluate at the end of every sample
time period. This period includes any intermediate time steps determined by
the optional NSTEPS input, as discussed in “Optimizing Accuracy of Solutions”
on page 5-74. These functions are specified as callable functions of time and
state, and must return an updated state vector Xt:

X f t Xt t= ( , )

You must specify multiple processing functions as a cell array of functions.
These functions are invoked in the order in which they appear in the cell array.

Processing functions are not required to use time (t) or state (Xt). They are also
not required to update or change the input state vector. In fact, simulation
and interpolation methods have no knowledge of any implementation details,
and in this respect, they only adhere to a published interface.

Such processing functions provide a powerful modeling tool that can
solve a variety of problems. Such functions allow you to, for example,
specify boundary conditions, accumulate statistics, plot graphs, and price
path-dependent options.

Except for Brownian motion (BM) models, the individual components of
the simulated state vector typically represent variables whose real-world
counterparts are inherently positive quantities, such as asset prices or
interest rates. However, by default, most of the simulation and interpolation
methods provided here model the transition between successive sample
times as a scaled (possibly multivariate) Gaussian draw. Consequently,
when approximating a continuous-time process in discrete time, the state
vector may not remain positive. The only exception is the simBySolution
logarithmic transform of separable geometric Brownian motion models.
Moreover, by default, none of the simulation and interpolation methods make
adjustments to the state vector. Therefore, you are responsible for ensuring
that all components of the state vector remain positive as appropriate.

5-57



5 Monte Carlo Simulation of Stochastic Differential Equations

Fortunately, specifying non-negative states ensures a simple end-of-period
processing adjustment. Although this adjustment is widely applicable, it is
revealing when applied to a univariate CIR square-root diffusion model:

dX X dt X dW S L X dt X dWt t t t t t t= − + = − +0 25 0 1 0 2
1
2

1
2. ( . ) . ( ) σ

Perhaps the primary appeal of univariate CIR models where:

2 2SL ≥ σ

is that the short rate remains positive. However, the positivity of short rates
only holds for the underlying continuous-time model.

1 To illustrate the latter statement, simulate daily short rates of the CIR
model over one calendar year (approximately 250 trading days):

randn('state', 10)
obj = cir(0.25, @(t,X) 0.1, 0.2, 'StartState', 0.02);
[X,T] = obj.simByEuler(250, 'DeltaTime', ...

1/250, 'nTrials', 5);

Interest rates can become negative if the resulting paths are simulated
in discrete time. Moreover, since CIR models incorporate a square root
diffusion term, the short rates might even become complex:

[T(200:210) X(200:210,1,5)]

ans =
0.7960 0.0023
0.8000 0.0023
0.8040 0.0022
0.8080 0.0010
0.8120 0.0005
0.8160 0.0003
0.8200 -0.0001
0.8240 -0.0000 - 0.0002i
0.8280 0.0002 - 0.0003i
0.8320 0.0005 - 0.0004i

5-58



Solving Problems with SDE Models

0.8360 0.0007 - 0.0004i

2 Repeat the simulation, this time specifying a processing function that takes
the absolute magnitude of the short rate at the end of each period. You can
access the processing function by time and state (t, Xt), but it only uses
the state vector of short rates Xt:

randn('state', 10)
[Y,T] = obj.simByEuler(250, 'DeltaTime', 1/250, ...

'nTrials', 5, 'Processes', @(t,X) abs(X));

3 Graphically compare the magnitude of the unadjusted path (with negative
and complex numbers!) to the corresponding path kept positive by using an
end-of-period processing function over the time span of interest:

clf
plot(T, 100 * abs(X(:,1,5)), 'red', T, ...

100 * Y(:,1,5), 'blue')
axis([0.75 1 0 1.2])
xlabel('Time (Years)'), ylabel('Short Rate (%)')
title('Univariate CIR Short Rates')
legend({'Negative/Complex Rates' 'Positive Rates'}, ...

'Location', 'Best')

5-59



5 Monte Carlo Simulation of Stochastic Differential Equations

Black-Scholes Option Pricing
As discussed in “Ensuring Positive State Variables” on page 5-57, all
simulation and interpolation methods allow you to specify one or more
functions of the form:

X f t Xt t= ( , )

to evaluate at the end of every sample time.

The previous example illustrated a simple, common end-of-period processing
function to ensure non-negative interest rates. This example illustrates a
processing function that allows you to avoid simulation outputs altogether.

5-60



Solving Problems with SDE Models

Consider pricing European stock options by Monte Carlo simulation within a
Black-Scholes-Merton framework. Assume that the stock has the following
characteristics:

• The stock currently trades at 100.

• The stock pays no dividends.

• The stock’s volatility is 50% per annum.

• The option strike price is 95.

• The option expires in three months.

• The risk-free rate is constant at 10% per annum.

To solve this problem, model the evolution of the underlying stock by a
univariate geometric Brownian motion (GBM) model with constant parameters:

dX X dt X dWt t t t= +0 1 0 5. .

Furthermore, assume that the stock price is simulated daily, and that each
calendar month comprises 21 trading days:

strike = 95;
rate = 0.1;
sigma = 0.5;
dt = 1 / 252;
nPeriods = 63;
T = nPeriods * dt;
obj = gbm(rate, sigma, 'StartState', 100);

The goal is to simulate independent paths of daily stock prices, and calculate
the price of European options as the risk-neutral sample average of the
discounted terminal option payoff at expiration 63 days from now. This
example calculates option prices by two approaches:

• A Monte Carlo simulation that explicitly requests the simulated stock
paths as an output. The output paths are then used to price the options.

• An end-of-period processing function, accessible by time and state, that
records the terminal stock price of each sample path. This processing

5-61



5 Monte Carlo Simulation of Stochastic Differential Equations

function is implemented as a nested function with access to shared
information. For more information, see the demo blackScholesExample.m.

1 Before simulation, invoke the example file to access the end-of-period
processing function:

nTrials = 10000; % Number of independent trials (i.e., paths)
f = blackScholesExample(nPeriods, nTrials)
f =

BlackScholes: @blackScholesExample/saveTerminalStockPrice
CallPrice: @blackScholesExample/getCallPrice
PutPrice: @blackScholesExample/getPutPrice

2 Simulate 10000 independent trials (sample paths). Request the simulated
stock price paths as an output, and specify an end-of-period processing
function:

randn('state', 0)
X = obj.simBySolution(nPeriods, 'DeltaTime', dt, ...

'nTrials', nTrials, 'Processes', f.BlackScholes);

3 Calculate the option prices directly from the simulated stock price paths.
Because these are European options, ignore all intermediate stock prices:

call = mean(exp(-rate * T) * max(squeeze(X(end,:,:)) ...
- strike, 0))

put = mean(exp(-rate * T) * max(strike - ...
squeeze(X(end,:,:)), 0))

call =
13.9964

put =
6.2028

4 Price the options indirectly by invoking the nested functions:

f.CallPrice(strike, rate)
f.PutPrice (strike, rate)
ans =

13.9964
ans =

6.2028

5-62



Solving Problems with SDE Models

For reference, the theoretical call and put prices computed from the
Black-Scholes option formulas are 13.6953 and 6.3497, respectively.

5 Although steps 3 and 4 produce the same option prices, the latter approach
works directly with the terminal stock prices of each sample path.
Therefore, it is much more memory efficient. In this example, there is no
compelling reason to request an output.

User-Specified Random Number Generation:
Stratified Sampling
Simulation methods allow you to specify a noise process directly, as a callable
function of time and state:

z Z t Xt t= ( , )

Stratified sampling is a variance reduction technique that constrains a
proportion of sample paths to specific subsets (or strata) of the sample space.

This example specifies a noise function to stratify the terminal value of a
univariate equity price series. Starting from known initial conditions, the
function first stratifies the terminal value of a standard Brownian motion,
and then samples the process from beginning to end by drawing conditional
Gaussian samples using a Brownian bridge.

The stratification process assumes that each path is associated with a single
stratified terminal value such that the number of paths is equal to the number
of strata. This technique is called proportional sampling. This example is
similar to, yet more sophisticated than, the one discussed in “Stochastic
Interpolation and the Brownian Bridge” on page 5-42. Since stratified
sampling requires knowledge of the future, it also requires more sophisticated
time synchronization; specifically, the function in this example requires
knowledge of the entire sequence of sample times. For more information,
see the demo stratifiedExample.m.

The function implements proportional sampling by partitioning the unit
interval into bins of equal probability by first drawing a random number
uniformly distributed in each bin. The inverse cumulative distribution
function of a standard N(0,1) Gaussian distribution then transforms these

5-63



5 Monte Carlo Simulation of Stochastic Differential Equations

stratified uniform draws. Finally, the resulting stratified Gaussian draws are
scaled by the square root of the terminal time to stratify the terminal value of
the Brownian motion.

The noise function does not return the actual Brownian paths, but rather the
Gaussian draws Z(t,Xt) that drive it.

This example first stratifies the terminal value of a univariate, zero-drift,
unit-variance-rate Brownian motion (BM) model:

dX dWt t=

1 Assume that 10 paths of the process are simulated daily over a three-month
period. Also assume that each calendar month and year consist of 21 and
252 trading days, respectively:

randn('state', 10), rand('twister', 0)
dt = 1 / 252; % 1 day = 1/252 years
nPeriods = 63; % 3 months = 63 trading days
T = nPeriods * dt; % 3 months = 0.25 years

nPaths = 10; % # of simulated paths
obj = bm(0, 1, 'StartState', 0);
sampleTimes = cumsum([obj.StartTime ...

dt(ones(nPeriods,1))]);
z = stratifiedExample(nPaths, sampleTimes)
z = @stratifiedExample/stratifiedSampling

2 Simulate the standard Brownian paths by explicitly passing the stratified
sampling function to the simulation method:

X = obj.simulate(nPeriods, 'DeltaTime', dt, ...
'nTrials', nPaths, 'Z', z);

3 For convenience, reorder the output sample paths by reordering the
3-dimensional output to a 2-dimensional equivalent array:

X = squeeze(X);

4 Verify the stratification:

a Recreate the uniform draws with proportional sampling:

5-64



Solving Problems with SDE Models

rand('twister', 0)
U = ((1:nPaths)' - 1 + rand(nPaths,1))/nPaths;

b Transform them to obtain the terminal values of standard Brownian
motion:

WT = norminv(U) * sqrt(T); % Stratified Brownian motion.

c Plot the terminal values and output paths on the same figure:

plot(sampleTimes, X), hold('on')
xlabel('Time (Years)'), ylabel('Brownian State')
title('Terminal Stratification: Standard Brownian Motion')
plot(T, WT, '. black', T, WT, 'o black')
hold('off')

5-65



5 Monte Carlo Simulation of Stochastic Differential Equations

The last value of each sample path (the last row of the output array X)
coincides with the corresponding element of the stratified terminal value of
the Brownian motion. This occurs because the simulated model and the noise
generation function both represent the same standard Brownian motion.

However, you can use the same stratified sampling function to stratify the
terminal price of constant-parameter geometric Brownian motion models. In
fact, you can use the stratified sampling function to stratify the terminal
value of any constant-parameter model driven by Brownian motion if the
model’s terminal value is a monotonic transformation of the terminal value of
the Brownian motion.

To illustrate this, load the SDE_data data set and simulate risk-neutral
sample paths of the FTSE 100 index using a geometric Brownian motion
(GBM) model with constant parameters:

dX rX dt X dWt t t t= +σ

where the average Euribor yield represents the risk-free rate of return.

1 Assume that the relevant information derived from the daily data is
annualized, and that each calendar year comprises 252 trading days:

returns = price2ret(SDE_Data.UK);
sigma = std(returns) * sqrt(252);
rate = SDE_Data.Euribor3M;
rate = mean(360 * log(1 + rate));

2 Create the GBM model, assuming the FTSE 100 starts at 100:

obj = gbm(rate, sigma, 'StartState', 100);

3 Determine the sample time and simulate the price paths.

In what follows, NSTEPS specifies the number of intermediate time steps
within each time increment DeltaTime. Each increment DeltaTime
is partitioned into NSTEPS subintervals of length DeltaTime/nSteps
each, refining the simulation by evaluating the simulated state vector
at NSTEPS–1 intermediate points. This refinement improves accuracy

5-66



Solving Problems with SDE Models

by allowing the simulation to more closely approximate the underlying
continuous-time process without storing the intermediate information:

nSteps = 1;
sampleTimes = cumsum([obj.StartTime ;
dt(ones(nPeriods * nSteps,1))/nSteps]);
z = stratifiedExample(nPaths, sampleTimes);
randn('state', 10), rand('twister', 0)
[Y, Times] = obj.simBySolution(nPeriods, 'nTrials, nPaths, ...

'DeltaTime', dt, 'nSteps', nSteps, 'Z', z);
Y = squeeze(Y); % Reorder to a 2-D array
plot(Times, Y)
xlabel('Time (Years)'), ylabel('Index Level')
title('FTSE 100 Terminal Stratification: ...
Geometric Brownian Motion')

5-67



5 Monte Carlo Simulation of Stochastic Differential Equations

Although the terminal value of the Brownian motion shown in the latter
plot is normally distributed, and the terminal price in the previous plot is
lognormally distributed, the corresponding paths of each graph are similar.

5-68



Creating User-Specified Functions

Creating User-Specified Functions

In this section...

“Evaluating Object Parameters, Noise, and End-of-Period Processing
Functions” on page 5-69

“Random Number Generation Functions vs. End-of-Period Processing
Functions” on page 5-70

Evaluating Object Parameters, Noise, and
End-of-Period Processing Functions
Several examples in this documentation emphasize the evaluation of object
parameters as functions accessible by a common interface. In fact, you can
evaluate object parameters by passing to them time and state, regardless of
whether the underlying user-specified parameter is a function. However, it
is helpful to compare the behavior of object parameters that are specified as
functions to that of user-specified noise and end-of-period processing functions.

Object parameters that are specified as functions are evaluated in the same
way as user-specified random number (noise) generation functions. (For more
information, see “Random Number Generation Functions vs. End-of-Period
Processing Functions” on page 5-70.) Object parameters that are specified as
functions are inputs to model object constructors. User-specified noise and
processing functions are optional inputs to model object constructors.

Because class constructors offer unique interfaces, and simulation methods
of any given model have different implementation details, models often call
parameter functions for validation purposes a different number of times, or in
a different order, during object creation, simulation, and interpolation.

Therefore, although parameter functions, user-specified noise generation
functions, and end-of-period processing functions all share the same interface
and are validated at the same initial time and state (obj.StartTime and
obj.StartState), parameter functions are not guaranteed to be invoked
only once before simulation as noise generation and end-of-period processing
functions are. In fact, parameter functions might not even be invoked the
same number of times during a given Monte Carlo simulation process.

5-69



5 Monte Carlo Simulation of Stochastic Differential Equations

In most applications in which you specify parameters as functions, they are
simple, deterministic functions of time and/or state. There is no need to count
periods, count trials, or otherwise accumulate information or synchronize
time.

However, if parameter functions require more sophisticated bookkeeping, the
correct way to determine when a simulation has begun (or equivalently, to
determine when model validation is complete) is to determine when the input
time and/or state differs from the initial time and state (obj.StartTime and
obj.StartState, respectively). Because the input time is a known scalar,
detecting a change from the initial time is likely the best choice in most
situations. This is a general mechanism that you can apply to any type of
user-defined function.

Random Number Generation Functions vs.
End-of-Period Processing Functions
It is useful to compare the evaluation rules of user-specified noise generation
functions to those of end-of-period processing functions. These functions have
the following in common:

• They both share the same general interface, returning a column vector of
appropriate length when evaluated at the current time and state:

X f t Xt t= ( , )

z Z t Xt t= ( , )

• Before simulation, the simulation method itself calls each function is
once to validate the size of the output at the initial time and state,
obj.StartTime and obj.StartState, respectively.

• During simulation, the simulation method calls each function the same
number of times:NPERIODS * NSTEPS.

However, there is an important distinction regarding the timing, between
these two types of functions. It is most clearly drawn directly from the generic
SDE model:

dX F t X dt G t X dWt t t t= +( , ) ( , )

5-70



Creating User-Specified Functions

This equation is expressed in continuous time, but the simulation methods
approximate the model in discrete time as:

X X F t X dt G t X tZ t Xt t t t t t+ = + +Δ Δ( , ) ( , ) ( , )

where Δt > 0

is a small (and not necessarily equal) period or time increment into the future.
This equation is often referred to as an Euler approximation. All functions on
the right-hand side are evaluated at the current time and state (t, Xt).

In other words, over the next small time increment, the simulation evolves the
state vector based only on information available at the current time and state.
In this sense, you can think of the noise function as a beginning-of-period
function, or as a function evaluated from the left. This is also true for any
user-supplied drift or diffusion function. For more details, see “Evaluating
Object Parameters, Noise, and End-of-Period Processing Functions” on page
5-69.

In contrast, user-specified end-of-period processing functions are applied only
at the end of each simulation period or time increment. For more information
about processing functions, see “Black-Scholes Option Pricing” on page 5-60.

Therefore, all simulation methods evaluate noise generation functions as:

z Z t Xt t= ( , )

for t = t0 + Δt, t0 + 2Δt, ..., T

Yet simulation methods evaluate end-of-period processing functions as:

X f t Xt t= ( , )

for t = t0 + Δt, t0 + 2Δt, ..., T

where t0 and T are the initial time (taken from the object) and the terminal
time (derived from inputs to the simulation method), respectively. These
evaluations occur on all sample paths. Therefore, during simulation, noise
functions are never evaluated at the final (terminal) time, and end-of-period
processing functions are never evaluated at the initial (starting) time.

5-71



5 Monte Carlo Simulation of Stochastic Differential Equations

Managing Memory, Performance, and Solution Accuracy

In this section...

“Managing Memory” on page 5-72

“Enhancing Performance” on page 5-73

“Optimizing Accuracy of Solutions” on page 5-74

Managing Memory
There are two general approaches for managing memory when solving most
problems supported by the SDE engine:

• Perform a traditional simulation to simulate the underlying variables of
interest, specifically requesting and then manipulating the output arrays.

This approach is straightforward and the best choice for small or
medium-sized problems. Since its outputs are arrays, it is convenient to
manipulate simulated results in the MATLAB® matrix-based language.
However, as the scale of the problem increases, the benefit of this approach
decreases, because the output arrays must store large quantities of possibly
extraneous information.

For example, consider pricing a European option in which the terminal
price of the underlying asset is the only value of interest. To ease the
memory burden of the traditional approach, reduce the number of
simulated periods specified by the required input NPERIODS and specify
the optional input NSTEPS. This enables you to manage memory without
sacrificing accuracy (see “Optimizing Accuracy of Solutions” on page 5-74).

In addition, simulation methods can determine the number of output
arguments and allocate memory accordingly. Specifically, all simulation
methods support the same output argument list:

[Paths, Times, Z]

where Paths and Z can be large, 3-dimensional time-series arrays.
However, the underlying noise array is typically unnecessary, and is only
stored if requested as an output. In other words, Z is stored only at your
request; do not request it if you do not need it.

5-72



Managing Memory, Performance, and Solution Accuracy

If you need the output noise array Z but do not need the Paths time-series
array, you can avoid storing Paths by using the optional input flag
StorePaths, which all simulation methods support. By default, Paths is
stored (StorePaths = true). However, setting StorePaths to false returns
Paths as an empty matrix.

• Specify one or more end-of-period processing functions to manage and store
only the information of interest, avoiding simulation outputs altogether.

This approach requires you to specify one or more end-of-period processing
functions, and is often the preferred approach for large-scale problems.
This approach allows you to avoid simulation outputs altogether. Since no
outputs are requested, the 3-dimensional time-series arrays Paths and
Z are not stored.

This approach often requires more effort, but is far more elegant and allows
you to customize tasks and dramatically reduce memory usage.

Enhancing Performance
The following approaches improve performance when solving SDE problems:

• Specifying model parameters as traditional MATLAB arrays and functions,
in various combinations. This provides a flexible interface that can support
virtually any general nonlinear relationship. However, while functions
offer a convenient and elegant solution for many problems, simulations
typically run faster when you specify parameters as double-precision
vectors or matrices. Thus, it is a good practice to specify model parameters
as arrays when possible.

• Using Brownian motion (BM) and geometric Brownian motion (GBM)
models that provide overloaded Euler simulation methods take advantage
of separable, constant-parameter models. These specialized methods
are exceptionally fast, but are only available to models with constant
parameters that are simulated without user-specified end-of-period
processing and noise generation functions.

• Replace the simulation of a constant-parameter, univariate model derived
from the SDEDDO class with that of a diagonal multivariate model, treating
the multivariate model as a portfolio of univariate models. This increases
the dimensionality of the model and enhances performance by decreasing
the effective number of simulation trials.

5-73



5 Monte Carlo Simulation of Stochastic Differential Equations

Note This technique is only applicable to constant-parameter univariate
models without user-specified end-of-period processing and noise
generation functions.

• Take advantage of the fact that simulation methods are designed to detect
the presence of NaN (not a number) conditions returned from end-of-period
processing functions. A NaN represents the result of an undefined numerical
calculation, and any subsequent calculation based on a NaN produces
another NaN. This helps improve performance in certain situations.
For example, consider simulating paths of the underlier of a knock-out
barrier option (an option that becomes worthless as soon as the price of
the underlying asset crosses some prescribed barrier). A user-defined
end-of-period function could detect a barrier crossing and return a NaN to
signal early termination of the current trial.

Optimizing Accuracy of Solutions

About Precision and Error
The simulation architecture does not, in general, simulate exact solutions
to any SDE. Instead, the simulation architecture provides a discrete-time
approximation of the underlying continuous-time process, a simulation
technique often known as an Euler approximation.

In the most general case, a given simulation derives directly from an SDE.
Therefore, the simulated discrete-time process approaches the underlying
continuous-time process only in the limit as the time increment dt approaches
zero. In other words, the simulation architecture places more importance
on ensuring that the probability distributions of the discrete-time and
continuous-time processes are close, than on the pathwise proximity of the
processes.

Before illustrating techniques to improve the approximation of solutions, it is
helpful to understand the source of error. Throughout this architecture, all
simulation methods assume that model parameters are piece-wise constant
over any time interval of length dt. In fact, the methods even evaluate
dynamic parameters at the beginning of each time interval and hold them

5-74



Managing Memory, Performance, and Solution Accuracy

fixed for the duration of the interval. This sampling approach introduces
discretization error.

However, there are certain models for which the piece-wise constant approach
provides exact solutions:

• “Creating Brownian Motion (BM) Models” on page 5-21 with constant
parameters, simulated by Euler approximation (simByEuler).

• “Creating Geometric Brownian Motion (GBM) Models” on page 5-23 with
constant parameters, simulated by closed-form solution (simBySolution).

• “Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models” on
page 5-26 with constant parameters, simulated by closed-form solution
(simBySolution)

More generally, you can simulate the exact solutions for these models even if
the parameters vary with time, if they vary in a piece-wise constant way such
that parameter changes coincide with the specified sampling times. However,
such exact coincidence is unlikely; therefore, the previously discussed constant
parameter condition is commonly used in practice.

One obvious way to improve accuracy involves sampling the discrete-time
process more frequently. This decreases the time increment (dt), causing the
sampled process to more closely approximate the underlying continuous-time
process. Although decreasing the time increment is universally applicable,
however, there is a tradeoff among accuracy, run-time performance, and
memory usage.

To manage this tradeoff, specify an optional input argument, NSTEPS, for
all simulation methods. NSTEPS indicates the number of intermediate time
steps within each time increment dt, at which the process is sampled but
not reported.

It is important and convenient at this point to emphasize the relationship of
the inputs NSTEPS, NPERIODS, and DeltaTime to the output vector Times,
which represents the actual observation times at which the simulated paths
are reported.

5-75



5 Monte Carlo Simulation of Stochastic Differential Equations

• NPERIODS, a required input, indicates the number of simulation periods of
length DeltaTime, and determines the number of rows in the simulated
3-dimensional Paths time-series array (if an output is requested).

• DeltaTime is optional, and indicates the corresponding NPERIODS-length
vector of positive time increments between successive samples. It
represents the familiar dt found in stochastic differential equations. If
DeltaTime is unspecified, the default value of 1 is used.

• NSTEPS is also optional, and is only loosely related to NPERIODS and
DeltaTime. NSTEPS specifies the number of intermediate time steps within
each time increment DeltaTime.

Specifically, each time increment DeltaTime is partitioned into NSTEPS
subintervals of length DeltaTime/NSTEPS each, and refines the simulation
by evaluating the simulated state vector at (NSTEPS - 1) intermediate
times. Although the output state vector (if requested) is not reported
at these intermediate times, this refinement improves accuracy by
causing the simulation to more closely approximate the underlying
continuous-time process. If NSTEPS is unspecified, the default is 1 (to
indicate no intermediate evaluation).

• The output Times is an NPERIODS + 1-length column vector of observation
times associated with the simulated paths. Each element of Times is
associated with a corresponding row of Paths.

The following example illustrates this intermediate sampling by comparing
the difference between a closed-form solution and a sequence of Euler
approximations derived from various values of NSTEPS.

Example: Improving SDE Solution Accuracy by Increasing
Sampling of the Discrete-Time Process
Consider a univariate geometric Brownian motion (GBM) model with constant
parameters:

dX X dt X dWt t t t= +0 1 0 4. .

Assume that the expected rate of return and volatility parameters are
annualized, and that a calendar year comprises 250 trading days.

1 Simulate approximately four years of univariate prices for both the exact
solution and the Euler approximation for various values of NSTEPS:

5-76



Managing Memory, Performance, and Solution Accuracy

nPeriods = 1000;
dt = 1 / 250;
obj = gbm(0.1, 0.4, 'StartState', 100);
randn('state', 25)
[X,T] = obj.simBySolution(nPeriods, 'DeltaTime', dt);
randn('state', 25)
[Y,T] = obj.simByEuler(nPeriods, 'DeltaTime', dt);
clf, plot(T, X - Y, 'red'), hold('on')
randn('state', 25)
[X,T] = obj.simBySolution(nPeriods, 'DeltaTime',...

dt, 'nSteps', 2);
randn('state', 25)
[Y,T] = obj.simByEuler(nPeriods, 'DeltaTime', ...

dt, 'nSteps', 2);
plot(T, X - Y, 'blue')
randn('state', 25)
[X,T] = obj.simBySolution(nPeriods, 'DeltaTime', ...

dt, 'nSteps', 10);
randn('state', 25)
[Y,T] = obj.simByEuler(nPeriods, 'DeltaTime', ...

dt, 'nSteps', 10);
plot(T, X - Y, 'green')
randn('state', 25)
[X,T] = obj.simBySolution(nPeriods, 'DeltaTime', ...

dt, 'nSteps', 100);
randn('state', 25)
[Y,T] = obj.simByEuler(nPeriods, 'DeltaTime', ...

dt, 'nSteps', 100);
plot(T, X - Y, 'black'), hold('off')

2 Compare the error (the difference between the exact solution and the Euler
approximation) graphically:

xlabel('Time (Years)'), ylabel('Price Difference')
title('Exact Solution Minus Euler Approximation: ...

Constant Parameter GBM')
legend({'# of Steps = 1' '# of Steps = 2' ...

'# of Steps = 10' '# of Steps = 100'}, ...
'Location', 'Best')

hold('off')

5-77



5 Monte Carlo Simulation of Stochastic Differential Equations

As expected, the simulation error decreases as the number of intermediate
time steps increases. Because the intermediate states are not reported, all
simulated time series have the same number of observations regardless of
the actual value of NSTEPS:

whos T X Y
Name Size Bytes Class Attributes

T 1001x1 8008 double
X 1001x1 8008 double
Y 1001x1 8008 double

Furthermore, since the previously simulated exact solutions are correct
for any number of intermediate time steps, additional computations are
not needed for this example. In fact, this assessment is generally correct.

5-78



Managing Memory, Performance, and Solution Accuracy

The exact solutions are sampled at intermediate times to ensure that the
simulation uses the same sequence of Gaussian random variates in the same
order. Without this assurance, there is no way to compare simulated prices on
a pathwise basis. However, there might be valid reasons for sampling exact
solutions at closely spaced intervals, such as pricing path-dependent options.

5-79



5 Monte Carlo Simulation of Stochastic Differential Equations

5-80



6

Estimation

Maximum Likelihood Estimation
(p. 6-2)

Performing maximum likelihood
estimation using garchfit

Initial Parameter Estimates (p. 6-4) How to use user-supplied and
automatically generated initial
parameter estimates

Presample Observations (p. 6-12) Computing presample data for
conditional mean and supported
variance models

Termination Criteria and
Optimization Results (p. 6-15)

Optimization parameters that affect
the optimization process

Examples: Specifying Your Own
Presample Data to Estimate
ARMA(R,M) Parameters (p. 6-21)

Illustrates presample data, transient
effects, and lower bound constraints.



6 Estimation

Maximum Likelihood Estimation
This section explains how the garchfit estimation engine uses maximum
likelihood to estimate the parameters needed to fit the specified models to a
given univariate return series.

Given an observed univariate time series and the conditional mean and
variance models described in “Conditional Mean and Variance Models” on
page 2-7, garchfit does the following:

• Infers the innovations (residuals) from the return series.

• Estimates, by maximum likelihood, the parameters needed to fit the
specified models to the return series.

Given a vector of initial parameter estimates, as described in “Initial
Parameter Estimates” on page 6-4, the garchfit function calls the
Optimization Toolbox™ fmincon function to perform constrained optimization
of a scalar function of several variables; that is, the log-likelihood function.
This technique is called constrained nonlinear optimization or nonlinear
programming. In turn, fmincon calls the appropriate log-likelihood objective
function to estimate the model parameters using maximum likelihood
estimation (MLE).

The chosen log-likelihood objective function proceeds as follows:

• Given the vector of current parameter values and the observed data Series,
the log-likelihood function infers the process innovations (residuals) by
inverse filtering. This inference operation rearranges the conditional mean
equation to solve for the current innovation ε t:

ε φ θ ε βt t i
i

R

t j
j

M

t j k
k

Nx
C y y x t k= − + − − −

=
−

=
−

=
∑ ∑ ∑

1
1

1 1
( , )

This equation is a whitening filter, transforming a (possibly) correlated
process yt into an uncorrelated white noise process ε t.

• The log-likelihood function then uses the inferred innovations ε t to infer

the corresponding conditional variances σ t
2

via recursive substitution into

6-2



Maximum Likelihood Estimation

the previous model-dependent conditional variance equations Equation
2-4, Equation 2-5, and Equation 2-6.

• Finally, the function uses the inferred innovations and conditional
variances to evaluate the appropriate log-likelihood objective function. If ε t
is Gaussian, the log-likelihood function is

LLF
T

t

T

t t
t

T

t= − − −
= =
∑ ∑2

2
1
2

1
21

2 2

1

2log( ) logπ σ ε σ
(6-1)

If ε t is Student’s t, the log-likelihood function is

LLF T t
t

T
=

+

− − − +−

=
∑log{

[
( )

]

( )

( ) } log log[
Γ

Γ

ν

π ν
ν σ

ν
1

2

2

2
1
2

1
21

2

1
2 2

1
11

2

2

2
1

+
−=

∑ ε

σ ν
t

tt

T

( )
]

(6-2)

where T is the sample size, that is, the number of rows in the series {yt}.
The degrees of freedom ν must be greater than 2.

The conditional mean equation, Equation 2-2, and the conditional variance
equations, Equation 2-4, Equation 2-5, and Equation 2-6, are recursive,
and generally require presample observations to initiate inverse filtering.
For this reason, the objective functions shown here are referred to as
conditional log-likelihood functions. Evaluation of the log-likelihood function
is conditioned, or based, on a set of presample observations. For more
information about the methods used to specify these presample observations,
see “Presample Observations” on page 6-12.

The iterative numerical optimization repeats the previous three steps until it
satisfies suitable termination criteria. For more information, see “Termination
Criteria and Optimization Results” on page 6-15 .

6-3



6 Estimation

Initial Parameter Estimates

In this section...

“User-Specified Initial Estimates” on page 6-4

“Automatically Generated Initial Estimates” on page 6-6

“Parameter Bounds” on page 6-10

User-Specified Initial Estimates
The constrained nonlinear optimizer, fmincon, requires a vector of initial
parameter estimates. The garchfit function computes initial parameter
estimates if you provide none. At times, however, it might be helpful to
compute and specify your own initial guesses to avoid convergence problems.
You can specify complete initial estimates for either or both the conditional
mean equation and the conditional variance equation.

For the conditional mean estimates to be complete, specify the following
parameters:

• C

• AR

• MA

These must be consistent with the orders you specified for R and M. The length
of AR must be R, and the length of MA must be M. If you provide a regression
matrix X, you must also specify the Regress parameter. C, AR, MA, and
Regress correspond respectively to C, Φj, θi, and βk in Equation 2-2.

Note Set C = NaN (Not-a-Number) to remove the constant C from the
conditional mean model. This fixes C = 0 without providing initial parameter
estimates for the remaining parameters. In this case, the value of FixC has
no effect.

For the conditional variance estimates to be complete, specify these
specification structure parameters for all conditional variance models:

6-4



Initial Parameter Estimates

• K

• GARCH

• ARCH

These must be consistent with the orders you specified for P and Q. The length
of GARCH must be P, and the length of ARCH must be Q. You must also specify
the Leverage parameter for GJR and EGARCH conditional variance models.
The parameters K, GARCH, ARCH, and Leverage correspond respectively to κ ,
Gi, Aj, andLj in Equation 2-4, Equation 2-5, and Equation 2-6.

You can use garchset to create the necessary specification structure, Spec, or
you can modify the Coeff structure returned by a previous call to garchfit.

If you provide initial parameter estimates for a model equation, you must
provide all the estimated constants and coefficients consistent with the
specified model orders. For example, for an ARMA(2,2) model with no
regression matrix, you must specify the parameters C, AR, and MA. If you
specify only MA, the specification is incomplete, and garchfit ignores the MA
you specified and automatically generates all the requisite initial estimates.

The following specification structure provides C and AR as initial parameter
estimates, but does not provide MA, even though M = 1. In this case,
garchfit ignores the C and AR fields, computes initial parameter estimates,
and overwrites existing parameters in the incomplete conditional mean
specification.

spec = garchset('R',1,'M',1,'C',0,'AR',0.5,...
'P',1,'Q',1,'K',0.0005,'GARCH',0.8,'ARCH',0.1)

spec =

Comment: 'Mean: ARMAX(1,1,?); Variance: GARCH(1,1)'
Distribution: 'Gaussian'

R: 1
M: 1
C: 0

AR: 0.5000
MA: []

VarianceModel: 'GARCH'
P: 1

6-5



6 Estimation

Q: 1
K: 5.0000e-004

GARCH: 0.8000
ARCH: 0.1000

However, the structure explicitly sets all fields in the conditional variance
model. Therefore, garchfit uses the specified values of K, GARCH, and ARCH
as initial estimates, subject to further refinement.

Automatically Generated Initial Estimates
garchfit automatically generates initial estimates if you provide incomplete
or no initial coefficient estimates for a conditional mean or variance model.
It first estimates the conditional mean parameters as needed, and then
estimates the conditional variance parameters as needed. Again, garchfit
ignores incomplete initial estimates. It estimates initial conditional mean
parameters using standard statistical time-series techniques, dependent upon
the parametric form of the conditional mean equation.

Conditional Mean Models Without a Regression Component

ARMA Models. Initial parameter estimates of general ARMA(R,M)
conditional mean models are estimated by the three-step method outlined in
Box, Jenkins, and Reinsel [10], Appendix A6.2.

• garchfit estimates the autoregressive coefficients, Φj, by computing the
sample autocovariance matrix and solving the Yule-Walker equations.

• Using these estimated coefficients, garchfit filters the observed Series to
obtain a pure moving average process.

• garchfit computes the autocovariance sequence of the moving
average process, and uses it to iteratively estimate the moving average
coefficients, θi. This also provides an estimate of the unconditional variance
of the innovations.

6-6



Initial Parameter Estimates

Conditional Mean Models with a Regression Component

ARX Models (No Moving Average Terms Allowed). Ordinary
least squares regression generates initial estimates of the autoregressive
coefficients, Φj, and the regression coefficients, βk, of the explanatory data
matrix X.

For more information, see Chapter 8, “Regression Components”.

ARMAX Models (Moving Average Terms Included). Initial parameter
estimation of the general ARMAX conditional mean models requires two steps:

• garchfit estimates an ARX model by ordinary least squares.

• garchfit estimates an MA(M) = ARMA(0,M) model, as described in
“Conditional Mean Models Without a Regression Component” on page 6-6.

Conditional Variance Models
Unlike conditional mean parameters, initial estimates of conditional variance
parameters are based on empirical analysis of financial time series. The
approach is dependent upon the conditional variance model you select.

GARCH(P,Q) Models. For GARCH models, garchfit assumes that the sum
of the Gi, (i = 1, ...,P) and the Aj, (j = 1, ...,Q is close to 1. Specifically, for a
general GARCH(P,Q) model (Equation 2-4), garchfit assumes that

G1 + ... + GP + A1 + ... + AQ = 0.9

If P > 0 (lagged conditional variances are included), then garchfit equally
allocates 0.85 out of the available 0.90 to the P GARCH coefficients. It
allocates the remaining 0.05 equally among the Q ARCH coefficients.

P = 0 specifies an ARCH(Q) model in which garchfit allocates 0.90 equally
to the Q ARCH terms.

The following examples clarify this approach.

Initial estimates of the GARCH(1,1) model are expressed as follows:

6-7



6 Estimation

σ κ σ εt t t
2

1
2

1
20 85 0 05= + +− −. .

A GARCH(2,1) model is initially expressed as:

σ κ σ σ εt t t t
2

1
2

2
2

1
20 425 0 425 0 05= + + +− − −. . .

An ARCH(1) model is initially expressed as:

σ κ εt t
2

1
20 9= + −.

An ARCH(2) model is initially expressed as:

σ κ ε εt t t
2

1
2

2
20 45 0 45= + +− −. .

Finally, garchfit estimates the constant κ of the conditional variance model
by first estimating the unconditional, or time-independent, variance of {ε t}:

σ ε2 2

1

1=
=
∑T t
t

T

In terms of the parameters, this can also be expressed as:

σ
κ κ2

1 1
1

1 0 85 0 05
=

− −

=
− +

= =
∑ ∑G Ai
t

P

j
j

Q ( . . )

and so

κ σ σ= − + =2 21 0 85 0 05 0 1( ( . . )) .

6-8



Initial Parameter Estimates

GJR(P,Q) Models. garchfit treats a GJR(P,Q) model, described in Equation
2-5, as an extension of an equivalent GARCH(P,Q) model with zero leverage
terms. Thus, initial parameter estimates of GJR models are identical to those
of equivalent order GARCH models (see “GARCH(P,Q) Models” on page 6-7),
with the additional assumption that all leverage terms are zero:Li = 0, 1 ≤ i
≤ Q.

EGARCH(P,Q) Models. For EGARCH models, garchfit assumes that
the sum of the Gi, (i = 1, ..., P is 0.9, and the sum of Aj, (j = 1, ..., Q is 0.2.
Specifically, for a general EGARCH(P,Q) model (Equation 2-6), garchfit
assumes that:

G1 + G2 + ... + GP = 0.9

A1 + A2 + ... + AQ = 0.2

and

Li = 0, 1 ≤ i ≤ Q

If P > 0 (lagged conditional variances are included), then garchfit equally
allocates the available weight of 0.9 to the P GARCH coefficients. It equally
allocates the available weight of 0.2 to the Q ARCH coefficients.

In EGARCH models, the standardized innovation, zt, serves as the forcing
variable for both the conditional variance and the error. Thus, theGi
terms captured volatility clustering (that is, persistence). In other words,
EGARCH models make no allowance for the relationship between theGi
and Aj coefficients regarding initial parameter estimates. Because of this,
EGARCH(0,Q) models ignore the persistence effect commonly associated with
financial returns, and are unusual. Some examples clarify the approach.

The EGARCH(1,1) model is by far the most common, and initial estimates
are expressed as:

log . log . [| | (| |)]σ κ σt t t tz E z2
1

2
1 10 9 0 2= + + −− − −

Initial estimates for an EGARCH(2,2) model are expressed as

6-9



6 Estimation

log . log . log . [| | (| |)]σ κ σ σt t t t tz E z2
1

2
2

2
1 10 45 0 45 0 1

0
= + + + −

+
− − − −

.. [| | (| |)]1 2 2z E zt t− −−

An EGARCH(0,1) model would be initially expressed as

log . [| | (| |)]σ κt t tz E z2
1 10 2= + −− −

As you can see, initial parameter estimates for EGARCH models are most
effective when P > 0.

Finally, you can estimate the constant κ of an EGARCH conditional variance
model by noting the approximate relationship between the unconditional
variance of the innovations process, σ2, and the Gi parameters of an
EGARCH(1,1) model:

κ σ σ σ= − = − =( ) log ( . ) log . log1 1 0 9 0 11
2 2 2G

Parameter Bounds
garchfit bounds some model parameters to provide stability in the
optimization process. See the example “Active Lower Bound Constraint” on
page 6-30 for more information on overriding these bounds in the unlikely
event they become active.

Conditional Mean Model
For the conditional mean model, Equation 2-2, garchfit bounds the
conditional mean constant C and the conditional mean regression coefficients
βk, if any, in the interval [-10,10]. However, if the coefficient estimates that
you specify or that garchfit generates are outside this interval, garchfit
sets the appropriate lower or upper bound equal to the estimated coefficient.

GARCH(P,Q) and GJR(P,Q) Conditional Variance Models
For GARCH(P,Q) and GJR(P,Q) conditional variance models, represented
by Equation 2-3 and Equation 2-4, garchfit uses 5 as an upper bound for
the conditional variance constant κ . If the initial estimate is greater than 5,
garchfit uses the estimated value as the upper bound.

6-10



Initial Parameter Estimates

EGARCH(P,Q) Conditional Variance Model
For EGARCH(P,Q) conditional variance models, represented by Equation 2-5,
garchfit places arbitrary bounds on the conditional variance constant κ ,
such that − ≤ ≤5 5κ . If the magnitude of the initial estimate is greater than
5, garchfit adjusts the bounds accordingly.

6-11



6 Estimation

Presample Observations

In this section...

“Calculating Presample Data” on page 6-12

“User-Specified Presample Observations” on page 6-12

“Automatically Generated Presample Observations” on page 6-13

Calculating Presample Data
This section shows how garchfit automatically generates presample data for
the conditional mean model and each of the supported conditional variance
models. It also shows how to specify your own presample data. “Maximum
Likelihood Estimation” on page 6-2 discusses presample data required to
initiate inverse filtering and evaluate the conditional log-likelihood objective
function.

User-Specified Presample Observations
Use the time-series column vector inputs PreInnovations, PreSigmas, and
PreSeries to explicitly specify all required presample data. The following
table summarizes the minimum number of rows required to successfully
initiate the optimization process.

Garchfit Input
Argument

Minimum Number of
Rows
GARCH(P,Q),
GJR(P,Q) EGARCH(P,Q)

PreInnovations max(M,Q) max(M,Q)

PreSigmas P max(P,Q)

PreSeries R R

If you specify at least one, but fewer than three, sets of presample data,
garchfit does not attempt to derive presample observations for those you
omit. When specifying your own presample data, include all data required for
the given conditional mean and variance models. See the example “Specifying
Presample Data” on page 6-21.

6-12



Presample Observations

Automatically Generated Presample Observations
If you do not specify presample data, garchfit automatically generates the
required presample data.

Conditional Mean Models
For conditional mean models with an autoregressive component, garchfit
assigns the R required presample observations (PreSeries) of yt, the sample
mean of Series. For models with a moving-average component, it sets the
M required presample observations (PreInnovations) of ε t to their expected
value of zero. With this presample data, garchfit can infer the entire
sequence of innovations for any general ARMAX conditional mean model,
regardless of the conditional variance model you select.

garchfit attempts to eliminate the effect of transients in the presample data
it generates. This effect parallels that in the simulation process described in
“Automatically Generating Presample Data” on page 4-7. For an example
of transient effects in the estimation process, see “Presample Data and
Transient Effects” on page 6-24.

GARCH(P,Q) Models
Once garchfit computes the innovations, it assigns the sample mean of the
squared innovations

σ ε2 2

1

1=
=
∑T t
t

T

to the required P and Q presample observations of σ t
2

and εt
2

, respectively.
See Hamilton [22] and Bollerslev [6].

GJR(P,Q) Models
garchfit also assigns the average squared innovation to all required

presample observations of σ t
2

and εt
2

. In addition, garchfit weights the

Q presample observations of εt
2

associated with the leverage terms by 0.5
(that is, the probability of a negative past residual).

6-13



6 Estimation

EGARCH(P,Q) Models
garchfit also assigns the average squared innovation to all P presample

observations of σ t
2

. In addition, it sets all Q presample observations of the

standardized innovations
zt

t

t
= ( )

ε
σ to zero and

| | (
| |

)zt
t

t
=

ε
σ to the mean

absolute deviation. This has the effect of setting all Q presample ARCH and
leverage terms to zero.

6-14



Termination Criteria and Optimization Results

Termination Criteria and Optimization Results

In this section...

“Optimization Parameters” on page 6-15

“MaxIter and MaxFunEvals” on page 6-15

“TolCon, TolFun, and TolX” on page 6-16

“Convergence” on page 6-17

“Optimization Results” on page 6-17

“Constraint Violation Tolerance” on page 6-18

Optimization Parameters
Listed below, in order of importance, are several fields in the specification
structure that allow you to influence the optimization process.

TolCon Termination tolerance on the constraint violation

TolFun Termination tolerance on the function value

TolX Termination tolerance on the parameter estimates

MaxFunEvals Maximum number of function evaluations allowed

MaxIter Maximum number of iterations allowed

For more information about these parameters, see:

• “Tolerances and Stopping Criteria” in the Optimization Toolbox™
documentation.

• The garchset function reference page.

MaxIter and MaxFunEvals
MaxIter is the maximum number of iterations allowed in the estimation
process. Each iteration involves an optimization phase in which garchfit
modifies calculations such as line search, gradient, and step size. The default
value of MaxIter is 400. Although an estimation rarely exceeds MaxIter,

6-15



6 Estimation

you can increase the value if you suspect that the estimation terminated
prematurely.

MaxFunEvals, a field closely related to MaxIter, specifies the maximum
number of log-likelihood objective function evaluations. The default value is
100 times the number of parameters estimated in the model. For example,
the default model has four parameters, so the default value of MaxFunEvals
for the default model is 400. When the estimation process terminates
prematurely, it is usually because MaxFunEvals, rather than MaxIter, is
exceeded. You can increase MaxFunEvals if you suspect that the estimation
terminated prematurely.

The fields MaxFunEvals and MaxIter are purely mechanical in nature.
Although you may encounter situations in which MaxFunEvals or MaxIter is
reached, this is rather uncommon. Increasing MaxFunEvals or MaxIter may
allow successful convergence. However, reaching MaxFunEvals or MaxIter is
usually an indication that your model poorly describes the data. In particular,
it often indicates that the model is too complicated. Finally, although
MaxFunEvals and MaxIter can cause the function to stop before a solution is
found, they do not affect the solution once it is found.

TolCon, TolFun, and TolX
The fields TolCon, TolFun, and TolX are tolerance-related parameters. They
directly influence how and when convergence is achieved, and can also affect
the solution.

• TolCon is the termination tolerance placed on constraint violations. It
represents the maximum value by which parameter estimates can violate a
constraint and still allow successful convergence. For information about
these constraint violations, see “Conditional Mean and Variance Models”
on page 2-7.

• TolFun is the termination tolerance placed on the log-likelihood objective
function. Successful convergence occurs when the log-likelihood
function value changes by less than TolFun. For more information, see
“Optimization Results” on page 6-17.

• TolX is the termination tolerance placed on the estimated parameter
values. Like TolFun, successful convergence occurs when the parameter

6-16



Termination Criteria and Optimization Results

values change by less than TolX. For more information, see “Optimization
Results” on page 6-17.

Convergence
TolFun, and TolX have the same default value, 1e-006. The TolCon default is
1e-007. If the estimation shows little or no progress, or shows progress but
stops early, increase one or more of these parameter values. For example,
increasing the values from 1e-006 to 1e-004 may allow the estimation to
converge. If the estimation appears to converge to a suboptimal solution,
decrease one or more of these parameter values. Decreasing the values from
1e-006 to 1e-007 may provide more accurate parameter estimates.

Note You can avoid many convergence difficulties by performing a pre-fit
analysis. “Example: Analysis and Estimation Using the Default Model” on
page 2-16 describes graphical techniques, such as plotting the return series,
and examining the ACF and PACF. It also discusses some preliminary tests,
including Engle’s ARCH test and the Q-test. Chapter 10, “Model Selection and
Analysis” discusses other tests to help you determine the appropriateness of a
specific GARCH model. It also explains how equality constraints can help you
assess parameter significance. “Limitations of GARCH Modeling” on page 1-4
mentions some limitations of GARCH models that could affect convergence.

Optimization Results
Unlike MaxIter and MaxFunEvals, the tolerance fields TolCon, TolFun, and
TolX affect optimization results. (See “TolCon, TolFun, and TolX” on page
6-16.) Assuming that you have selected iterative display, a message like the
following appears upon successful termination:

Optimization terminated successfully:
Magnitude of directional derivative in search direction
less than 2*options.TolFun and maximum constraint violation
is less than options.TolCon

Optimization terminated successfully:
Search direction less than 2*options.TolX and
maximum constraint violation is less than options.TolCon

6-17



6 Estimation

Optimization terminated successfully:
First-order optimality measure less than options.TolFun and
maximum constraint violation is less than options.TolCon

Increasing TolFun or TolX from the default of 1e-6 to, for example, 1e-5,
relaxes one or both of the first two termination criteria. This often results in a
less accurate solution. Similarly, decreasing TolFun or TolX to, for example,
1e-7 restricts one or both of the first two termination criteria. This often
results in a more accurate solution, but may also require more iterations.
However, experience has shown that the default value of 1e-6 for TolFun
and TolX is almost always sufficient. Changing these values is unlikely to
significantly affect the estimation results for GARCH modeling. Thus, it is
recommended that you accept the default values for TolFun and TolX.

The default value of TolCon is 1e-7. Changing the value of TolCon can
significantly affect the solution in situations in which a constraint is active.
TolCon is the most important optimization-related field for the GARCH
Toolbox™ software. Additional discussion of its significance and use is helpful.

When garchfit actively imposes parameter constraints (other than
user-specified equality constraints) during the estimation process, the
statistical results based on the maximum likelihood parameter estimates are
invalid. (See Hamilton [22], page 142.) This is because statistical inference
relies on the log-likelihood function’s being approximately quadratic in the
neighborhood of the maximum likelihood parameter estimates. This cannot be
the case when the estimates fail to fall in the interior of the parameter space.

Constraint Violation Tolerance
At each step in the optimization process, garchfit evaluates the constraints
described in “Conditional Mean and Variance Models” on page 2-7 against
the current intermediate solution vector. For each user-specified equality
constraint, it determines whether there is a violation whose absolute value
is greater than TolCon. For each inequality constraint (including lower and
upper bounds), it determines whether the inequality is violated by more than
the value of TolCon. If either the TolFun or TolX exit condition is satisfied,
and if the maximum of any violations is less than the value of TolCon, then
the optimization terminates successfully. (See “TolCon, TolFun, and TolX”
on page 6-16.)

6-18



Termination Criteria and Optimization Results

Strict Inequality Constraints
The Optimization Toolbox fmincon numerical optimizer defines inequality
constraints as a less than or equal to condition. However, many GARCH
Toolbox inequality constraints are strict inequalities that specifically exclude
exact equality. For this reason, the GARCH Toolbox interpretation of TolCon
differs from the Optimization Toolbox interpretation.

TolCon applies to both strict inequalities and those that are not strict, but
garchfit provides special handling for strict inequalities. Specifically,
garchfit associates each strict inequality constraint with its theoretical
bound, or limit. However, to avoid the possibility of violating strict inequality
constraints, garchfit defines the actual bound for each such constraint as
the theoretical bound offset by 2*TolCon. The optimization can successfully
terminate if the actual bound is violated by as much as TolCon. Consequently,
any given strict inequality constraint is allowed to approach its theoretical
bound to within TolCon.

Single Parameter Strict Inequality Constraints
It is possible for an estimate of a strict inequality constraint that involves a
single parameter to terminate a distance TolCon from its theoretical bound.
However, experience has shown that this is unlikely. Examples of such
constraints are:

• The conditional variance constant κ > 0 for the GARCH(P,Q) and GJR(P,Q)
models

• The degrees of freedom ν > 2 for the Student’s t distribution

Typically, when the lower or upper bound of such a single-parameter
inequality constraint is active, the estimate remains 2*TolCon from the
bound.

It is unlikely that an estimate of a single parameter constraint will terminate
a distance TolCon from its theoretical bound. However, the garchfit
approach for handling strict inequalities still allows for this condition.

As an illustration, assume TolCon = 1e-7 (its default value), and consider the
default GARCH(1,1) model:

6-19



6 Estimation

y C

G A

t t

t t t

= +

= + +− −

ε

σ κ σ ε2
1 1

2
1 1

2

with constraints

κ > 0

G1 + A1 < 1

G1 ≥ 0

A1 ≥ 0.

When the lower bound constraintκ > 0 is active, the estimated value of κ is
typically

κ = 2e-7 = 2*TolCon.

Relaxing Constraint Tolerance Limits
Experience has shown that relaxing TolCon is more likely to remove an
active constraint in some cases than in others. For inequality constraints
with a single parameter, such as those discussed in “Single Parameter
Strict Inequality Constraints” on page 6-19, decreasing TolCon may relax
the constraint such that it is no longer active. The example “Active Lower
Bound Constraint” on page 6-30 explains how to identify such a condition by
examining the summary output structure.

This is not generally true for linear inequality constraints with multiple
parameters. An example is G1 + A1 < 1. When this constraint is active, the
estimated values of G1 and A1 are typically such that G1 + A1 = 0.9999999 =
1.0 – TolCon. Decreasing TolCon to, say, 1e-8, allows G1 + A1 to approach 1.0
more closely, but the linear inequality constraint is likely to remain active.

6-20



Examples: Specifying Your Own Presample Data to Estimate ARMA(R,M) Parameters

Examples: Specifying Your Own Presample Data to
Estimate ARMA(R,M) Parameters

In this section...

“Specifying Presample Data” on page 6-21

“Presample Data and Transient Effects” on page 6-24

“Alternative Technique for Estimating ARMA(R,M) Parameters” on page
6-30

“Active Lower Bound Constraint” on page 6-30

“Determining Convergence Status” on page 6-34

Specifying Presample Data
This example shows you how to specify your own presample data to initiate
the estimation process. It highlights the formal column-oriented nature of the
presample time-series inputs.

1 Load the nasdaq data set and convert prices to returns:

load garchdata
nasdaq = price2ret(NASDAQ);

2 Segment the NASDAQ data to compare estimation results from a relatively
stable period to those from a period of relatively high volatility:

plot(nasdaq)
axis([0 length(nasdaq) -0.15 0.15])
set(gca,'XTick',[1 507 1014 1518 2025 2529 3027])
set(gca,'XTickLabel',{'Jan 1990' 'Jan 1992' 'Jan 1994' ...

'Jan 1996' 'Jan 1998' 'Jan 2000' 'Jan 2002'})
ylabel('Return')
title('Daily Returns')

6-21



6 Estimation

The NASDAQ returns show a distinct increase in volatility starting,
approximately, in December 1997. This is roughly the 2000th observation.

3 Create a specification structure to model the NASDAQ returns as an MA(1)
process with GJR(1,1) residuals:

spec = garchset('VarianceModel','GJR','M',1,'P',1,'Q',1,...
'Display','off');

4 Estimate the parameters, standard errors, and inferred residuals and
standard deviations using the first 2000 observations, allowing garchfit
to automatically generate the necessary presample observations. Then
display the estimated coefficients and errors.

[coeff,errors,LLF,eFit,sFit] = garchfit(spec,nasdaq(1:2000));
garchdisp(coeff,errors)

Mean: ARMAX(0,1,0); Variance: GJR(1,1)

Conditional Probability Distribution: Gaussian

6-22



Examples: Specifying Your Own Presample Data to Estimate ARMA(R,M) Parameters

Number of Model Parameters Estimated: 6

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C 0.00056403 0.00023455 2.4048

MA(1) 0.25006 0.024165 10.3480
K 1.1907e-005 1.528e-006 7.7931

GARCH(1) 0.69447 0.033664 20.6295
ARCH(1) 0.024937 0.017695 1.4093

Leverage(1) 0.24541 0.030517 8.0420

5 This conditional mean model has no regression component. Therefore, you
can obtain the same estimation results by calling garchfit with an empty
regression matrix, X = [], as a placeholder for the third input:

[coeff,errors,LLF,eFit,sFit] = garchfit(spec,...
nasdaq(1:2000),[]);

6 Specify your own presample data by specifying additional inputs. Because
the inputs PreInnovations, PreSigmas, and PreSeries represent time
series in a formal sense, provide required presample data in the form of
column vectors of sufficient length.

From the table in “Presample Observations” on page 6-12:

• The length of PreInnovations must be at least max(M,Q) = 1.

• The length of PreSigmas must be at least P = 1.

• and PreSeries can be empty or unspecified altogether because R = 0.
Estimate the same model from the later high-volatility period, using the
inferred residuals and standard deviations from the previous period as
the presample data:

[coeff,errors] = garchfit(spec,nasdaq(2001:end),[],eFit,sFit);
garchdisp(coeff, errors)

Mean: ARMAX(0,1,0); Variance: GJR(1,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 6

6-23



6 Estimation

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C 0.00065398 0.00060488 1.0812

MA(1) 0.012699 0.035131 0.3615
K 1.7845e-005 3.9153e-006 4.5578

GARCH(1) 0.85799 0.026246 32.6906
ARCH(1) 0.016147 0.022595 0.7146

Leverage(1) 0.17433 0.033234 5.2455

Comparing the estimation results from the two periods reveals a marked
difference. The last input, PreSeries, is not needed and is left unspecified.

7 Since the example uses only the most recent observations of
PreInnovations, PreSigmas, and PreSeries, any of the following calls to
garchfit produce identical estimation results:

[coeff,errors] = garchfit(spec,nasdaq(2001:end),[],...
eFit(end),sFit(end));

[coeff,errors] = garchfit(spec,nasdaq(2001:end),[],...
eFit(end),sFit(end),nasdaq(1:2000));

[coeff,errors] = garchfit(spec,nasdaq(2001:end),...
[],eFit,sFit,nasdaq(1999:2000));

The first equivalent call passes in the minimum required presample
observations of past residuals and standard deviations. In this case, it
passes the last inferred observation of each. The last two equivalent calls
specify an unnecessary presample return series, which garchfit ignores.

If, for example, the original specification included an AR(2) model (that
is, R = 2), then at least the last two NASDAQ returns are needed to initiate
estimation. In this case, the last two calls to garchfit would produce
identical results for conditional mean models with AR components up to
2nd order.

Presample Data and Transient Effects
This example shows how to:

1 Simulate a return series, yTrue.

6-24



Examples: Specifying Your Own Presample Data to Estimate ARMA(R,M) Parameters

2 Use the garchinfer function to infer {ε t} and {σt} from the simulated
return series.

First, you use automatically generated presample data to infer the
approximate residuals and conditional standard deviation processes. You
then use explicitly specified presample data to infer the exact residuals
and conditional standard deviation processes. You then finally compare
the approximate conditional standard deviation processes with the exact
conditional standard deviations processes, to reveal the effect of transients
in the approximate results. The effect of transients in the estimation, or
inference, process parallels that in the simulations process described in
“Automatically Generating Presample Data” on page 4-7.

To avoid introducing differences as a result of the optimization, this example
uses garchinfer rather than garchfit. garchsim uses an ARMA model as
a linear filter to transform an uncorrelated input innovations process {ε t}
into a correlated output returns process {yt}. garchinfer (and alternatively,
garchfit) reverses this process by inferring innovations {ε t} and standard
deviation {σt} processes from the observations in {yt}.

1 Specify a time series as an AR(2) conditional mean model and GARCH(1,2)
conditional variance model:

spec = garchset('C',0,'AR',[0.5 -0.8],'K',0.0002,...
'GARCH',0.8,'ARCH',[0.1 0.05])

spec =

Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,2)'
Distribution: 'Gaussian'

R: 2
C: 0

AR: [0.5000 -0.8000]
VarianceModel: 'GARCH'

P: 1
Q: 2
K: 2.0000e-004

GARCH: 0.8000
ARCH: [0.1000 0.0500]

6-25



6 Estimation

Note This is an elaborate specification, typically unwarranted for a
real-world financial time series, and is meant for illustrative purposes only.

2 Simulate 102 observations for each of 5 realizations and reserve the first
2 rows of observations for the presample data needed by garchinfer in
step 4. The table in “Running Simulations With User-Specified Presample
Data” on page 4-13 shows that:

• The PreInnovations array must have at least max(M,Q) = 2 rows.

• PreSigmas must have at least P = 1 row.

• PreSeries must have at least R = 2 rows.
Add the initial state = 0 as a trailing input argument:

randn('state',0);
rand('twister',0);
[eTrue,sTrue,yTrue] = garchsim(spec,102,5);

3 Call garchinfer without explicit presample data, using observations 3 and
beyond as the observed return series input. This infers the approximate
residuals and conditional standard deviations based on the default
presample data inference approach:

[eApprox,sApprox] = garchinfer(spec,yTrue(3:end,:));

6-26



Examples: Specifying Your Own Presample Data to Estimate ARMA(R,M) Parameters

For more information, see the garchfit and garchinfer function reference
pages.

4 Call garchinfer again, but this time use the first two rows of the true
simulated data as presample data. Use of the presample data allows you to
infer the exact residuals and conditional standard deviations:

[eExact,sExact] = garchinfer(spec,yTrue(3:end,:),[],...
eTrue(1:2,:),sTrue(1:2,:),yTrue(1:2,:));

6-27



6 Estimation

5 Compare the first realization of the approximate and the exact inferred
conditional standard deviations reveals the distinction between
automatically generated and user-specified presample data:

plot(sApprox(:,1),'red')
grid('on'),hold('on')
plot(sExact(:,1),'blue')
title('Approximate Versus Exact Inferred Standard Deviations')

6-28



Examples: Specifying Your Own Presample Data to Estimate ARMA(R,M) Parameters

The approximate and exact standard deviations are asymptotically
identical. The only difference between the two curves is attributable to the
transients induced by the default initial conditions. If you were to plot the
first realization of the original simulated conditional standard deviations,
sTrue(3:end,1), on the current figure, it would lie on top of the blue curve.

Although the previous figure highlights the first realization of conditional
standard deviations, the comparison holds for any realization and for the
inferred residuals.

Thus, this example reveals the link between simulation and inference: you
can think of garchsim as a correlation filter capable of processing multiple
realizations simultaneously. It is the complement of garchinfer, which you
can think of as a whitening, or inverse, filter capable of processing multiple
realizations simultaneously. The garchfit estimation engine can process only
a single realization at a time. However, the transient effects highlighted in
this example are the same when applied to the estimation.

6-29



6 Estimation

Alternative Technique for Estimating ARMA(R,M)
Parameters
This example shows how you can use the GARCH Toolbox™ software as
a general-purpose univariate time-series processor. It demonstrates how
to estimate the parameters of ARMA(R,M) models. It uses an alternative
technique and the presample inputs PreInnovations and PreSeries, and
assumes a simple constant variance model.

Default Method
Estimation requires presample data to initiate the inverse filtering process.
In the absence of explicit presample data, garchfit assigns the R required
presample observations of yt, that is, Series, the sample mean of Series.
It also assigns the M required presample observations of ε t, that is, the
innovations, or residuals, their expected value of zero. This method then
calculates the log-likelihood objective function value using all the available
data in Series, and is the default GARCH Toolbox method.

Alternative Technique
Another method also sets theM required presample observations of the
residuals, ε t, to zero, but uses the first R actual observations of Series as
initial values. Thus, {y1, y2, ..., yR} are used to initiate the inverse filter, and the
log-likelihood objective function value is based on the remaining observations.
See Hamilton [22], page 132, or Box, Jenkins, and Reinsel [10], pages 236-237.

For example, assume that you have some hypothetical time series, xyz,
and you want to estimate an ARMA(R,M) model with constant conditional
variances. Using the alternative presample method, you would exclude
the first R observations of xyz from the input Series, and reserve
them for the input PreSeries. Specifically, you would set the input
Series = xyz(R+1:end), PreInnovations = zeros(M,1), PreSigmas = [],
and PreSeries = xyz(1:R).

Active Lower Bound Constraint
This example illustrates an active lower bound constraint, κ > 0, for the
conditional variance constant κ . This constraint is required for GARCH and
GJR variance models to ensure a positive conditional variance process. It also
illustrates how to identify such active constraints, and what to do about this

6-30



Examples: Specifying Your Own Presample Data to Estimate ARMA(R,M) Parameters

most commonly encountered active constraint. See “Termination Criteria and
Optimization Results” on page 6-15.

1 Load the NYSE data set and convert prices to returns:

load garchdata
nyse = price2ret(NYSE);
plot(nyse)
axis([0 length(nyse) -0.08 0.06])
set(gca,'XTick',[1 507 1014 1518 2025 2529 3027])
set(gca,'XTickLabel',{'Jan 1990' 'Jan 1992' 'Jan 1994' ...

'Jan 1996' 'Jan 1998' 'Jan 2000' 'Jan 2002'})
set(gca,'YTick',[-0.08:0.02:0.06])
ylabel('Return')
title('Daily Returns')

2 Estimate a default GARCH(1,1) model and print the estimation results.
For this example, TolCon = 1e-6. Iterative display is disabled due to space
constraints:

6-31



6 Estimation

spec = garchset('Display','off','P',1,'Q',1,'TolCon',1e-6);
[coeff,errors,LLF,eFit,sFit,summary] = garchfit(spec,nyse);
garchdisp(coeff,errors)

Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 4

Standard T
Parameter Value Error Statistic
----------- ----------- ------------ -----------

C 0.00051941 0.00013701 3.7910
K 2e-006 2.8192e-007 7.0943

GARCH(1) 0.87166 0.0095167 91.5925
ARCH(1) 0.10419 0.0073771 14.1238

3 Examination of these results reveals the estimated variance constant
K = 2e-006 = 0 + 2*TolCon = 2*TolCon. That is, κ is equal to the
theoretical lower bound plus 2*TolCon. You can see this by printing the
summary structure and looking at the constraints message field:

summary

summary =
warning: 'No Warnings'

converge: 'Function Converged to a Solution'
constraints: 'Boundary Constraints Active: Standard

Errors May Be Inaccurate'
covMatrix: [4x4 double]

iterations: 13
functionCalls: 115

lambda: [1x1 struct]

4 Print the lower and upper bound LaGrange multipliers and examine them
for nonzero values:

[summary.lambda.lower summary.lambda.upper]

ans =

6-32



Examples: Specifying Your Own Presample Data to Estimate ARMA(R,M) Parameters

1.0e+006 *

0 0
7.3602 0

0 0
0 0

The garchdisp function determines the display order of the lower and
upper bound LaGrange multipliers. This result shows that the lower bound
constraint κ > 0 is active.

5 Repeat the estimation with the default TolCon = 1e-7 and verify that
the constraint is no longer active:

spec = garchset('Display','off','P',1,'Q',1);
[coeff,errors,LLF,eFit,sFit,summary] = garchfit(spec,nyse);
garchdisp(coeff,errors)

Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 4

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C 0.00049676 0.00013137 3.7813
K 8.9128e-007 1.5776e-007 5.6495

GARCH(1) 0.91088 0.0069142 131.7410
ARCH(1) 0.079942 0.0058319 13.7077

summary
summary =

warning: 'No Warnings'
converge: 'Function Converged to a Solution'

constraints: 'No Boundary Constraints'
covMatrix: [4x4 double]

iterations: 21
functionCalls: 208

lambda: [1x1 struct]
[summary.lambda.lower summary.lambda.upper]

6-33



6 Estimation

ans =
0 0
0 0
0 0
0 0

Determining Convergence Status
There are two ways to determine whether an estimation achieves convergence:

• The first, easiest way is to examine the optimization details of the
estimation. By default, garchfit displays this information in the
MATLAB® Command Window.

• The second way is to request the garchfit optional summary output.

1 To illustrate these methods, use the DEM2GBP (Deutschmark/British pound
foreign-exchange rate) data:

load garchdata
dem2gbp = price2ret(DEM2GBP);
[coeff,errors,LLF,eFit,sFit,summary] = ...

garchfit(dem2gbp);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Diagnostic Information

Number of variables: 4

Functions

Objective: garchllfn

Gradient: finite-differencing

Hessian: finite-differencing (or Quasi-Newton)

Nonlinear constraints: armanlc

Gradient of nonlinear constraints: finite-differencing

Constraints

Number of nonlinear inequality constraints: 0

Number of nonlinear equality constraints: 0

Number of linear inequality constraints: 1

6-34



Examples: Specifying Your Own Presample Data to Estimate ARMA(R,M) Parameters

Number of linear equality constraints: 0

Number of lower bound constraints: 4

Number of upper bound constraints: 4

Algorithm selected

medium-scale

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

End diagnostic information

max Directional First-order

Iter F-count f(x) constraint Step-size derivative Optimality

1 28 -7916.01 -2.01e-006 7.63e-006 857 1.42e+005

2 36 -7959.65 -1.508e-006 0.25 389 9.8e+007

3 45 -7963.98 -3.113e-006 0.125 131 5.29e+006

4 52 -7965.59 -1.586e-006 0.5 55.9 4.45e+007

5 65 -7966.9 -1.574e-006 0.00781 101 1.46e+007

6 74 -7969.46 -2.201e-006 0.125 14.9 2.77e+007

7 83 -7973.56 -2.663e-006 0.125 36.6 1.45e+007

8 90 -7982.09 -1.332e-006 0.5 -6.39 5.59e+006

9 103 -7982.13 -1.399e-006 0.00781 6.49 1.32e+006

10 111 -7982.53 -1.049e-006 0.25 12.5 1.87e+007

11 120 -7982.56 -1.186e-006 0.125 3.72 3.8e+006

12 128 -7983.69 -1.11e-006 0.25 0.184 4.91e+006

13 134 -7983.91 -7.813e-007 1 0.732 1.22e+006

14 140 -7983.98 -9.265e-007 1 0.186 1.17e+006

15 146 -7984 -8.723e-007 1 0.0427 9.52e+005

16 154 -7984 -8.775e-007 0.25 0.0152 6.33e+005

17 160 -7984 -8.75e-007 1 0.00197 6.98e+005

18 166 -7984 -8.763e-007 1 0.000931 7.38e+005

19 173 -7984 -8.759e-007 0.5 0.000469 7.37e+005

20 179 -7984 -8.761e-007 1 0.00012 7.22e+005

21 199 -7984 -8.761e-007 -6.1e-005 0.0167 7.37e+005

22 213 -7984 -8.761e-007 0.00391 0.00582 7.26e+005

Optimization terminated successfully:

Search direction less than 2*options.TolX and

maximum constraint violation is less than options.TolCon

No Active Constraints

The optimization details indicate successful termination.

6-35



6 Estimation

2 Now examine the summary output structure:

summary
summary =

warning: 'No Warnings'
converge: 'Function Converged to a Solution'

constraints: 'No Boundary Constraints'
covMatrix: [4x4 double]

iterations: 22
functionCalls: 213

lambda: [1x1 struct]

The converge field indicates successful convergence. If the estimation
failed to converge, the converge field would contain the message Function
Did NOT Converge. If the number of iterations or function evaluations
exceeded its specified limits, the converge field would contain the message
Maximum Function Evaluations or Iterations Reached. The summary
structure also contains fields that indicate the number of iterations
(iterations) and log-likelihood function evaluations (functionCalls).

6-36



7

Forecasting the Conditional
Mean and Standard
Deviation of Return Series

Minimum Mean Square Error
Forecasting (p. 7-2)

The outputs of the forecasting
engine, garchpred

Generating Presample Observations
(p. 7-6)

How garchpred generates required
presample data

Asymptotic Behavior for Long-Range
Forecast Horizons (p. 7-7)

Asymptotic behavior of garchpred
outputs

Examples: Computing Forecasts
(p. 7-9)

Computing forecasts of the
conditional mean, a volatility
forecast, and a forecast with
multiple realizations



7 Forecasting the Conditional Mean and Standard Deviation of Return Series

Minimum Mean Square Error Forecasting

In this section...

“About the Forecasting Engine” on page 7-2

“Conditional Standard Deviations of Future Innovations” on page 7-2

“Conditional Mean Forecasting of the Return Series” on page 7-3

“MMSE Volatility Forecasting of Returns” on page 7-3

“RMSE Associated with Conditional Mean Forecasts” on page 7-4

About the Forecasting Engine
The forecasting engine garchpred computes minimum mean square error
(MMSE) forecasts of the conditional mean of returns {yt}, and the conditional
standard deviation of the innovations {ε t}, in each period of a user-specified
forecast horizon. To do this, garchpred views the conditional mean and
variance models from a linear filtering perspective. It then applies iterated
conditional expectations to the recursive equations, one forecast period at a
time.

Each output of garchpred is an array. The number of rows of this array
equals the user-specified forecast horizon, and its number of columns equals
the number of columns (realizations, or paths) in the time-series array of
asset returns, Series. For a general forecasting example involving multiple
realizations, see “Examples: Computing Forecasts” on page 7-9.

This section discusses the four garchpred outputs.

Conditional Standard Deviations of Future
Innovations
The first output of garchpred, SigmaForecast, is a matrix of conditional
standard deviations of future innovations (residuals) on a per-period basis.
This matrix represents the standard deviations derived from the MMSE
forecasts associated with the recursive volatility model you defined in the
GARCH specification structure.

7-2



Minimum Mean Square Error Forecasting

For GARCH(P,Q) and GJR(P,Q) models, SigmaForecast is the square root
of the MMSE conditional variance forecasts. For EGARCH(P,Q) models,
SigmaForecast is the square root of the exponential of the MMSE forecasts of
the logarithm of conditional variance.

The garchpred function computes the forecasts iteratively. Therefore, the
first row contains the standard deviation in the first forecast period for each
realization of Series, the second row contains the standard deviation in the
second forecast period, and so on. Thus, if you specify a forecast horizon
greater than one, garchpred also returns the per-period standard deviations
of all intermediate horizons. In this case, the last row contains the standard
deviation at the specified forecast horizon for each realization of Series.

Conditional Mean Forecasting of the Return Series
The second output of garchpred, MeanForecast, is a matrix of MMSE
forecasts of the conditional mean of Series on a per-period basis. Again,
the first row contains the forecast for each realization of Series in the first
forecast period, the second row contains the forecast in the second forecast
period, and the last row contains the forecast of Series at the forecast horizon.

MMSE Volatility Forecasting of Returns
The third output of garchpred, SigmaTotal, is a matrix of volatility forecasts
of returns over multiperiod holding intervals. That is, the first row contains
the expected standard deviation of returns for assets held for one period for
each realization of Series, the second row contains the standard deviation of
returns for assets held for two periods, and so on. Thus, the last row contains
the forecast of the standard deviation of the cumulative return obtained if an
asset was held for the entire forecast horizon.

garchpred computes the elements of SigmaTotal by taking the square root of

var [ ] [( ) ( )]t t
i

s

j
j

s i

i

s

t ty E+
= =

−

=
+∑ ∑∑= +1

1 11

2
1

21 ψ σ
(7-1)

where:

• S is the forecast horizon of interest (NumPeriods)

7-3



7 Forecasting the Conditional Mean and Standard Deviation of Return Series

• ψj is the coefficient of the jth lag of the innovations process in an
infinite-order MA representation of the conditional mean model (see the
function garchma).

In the special case of the default model for the conditional mean, yt = C +
ε t, this reduces to

var [ ] ( )t t
i

s

t t
i

s
y E+

=
+

=
∑ ∑=1

1
1

2

1
σ

. The SigmaTotal forecasts are correct for continuously compounded returns,
and approximate for periodically compounded returns. If you model the
conditional mean as a stationary invertible ARMA process, SigmaTotal is the
same size as SigmaForecast.

For conditional mean models with regression components, in which you
specify X or XF, SigmaTotal is an empty matrix, []. In other words, garchpred
computes SigmaTotal only if you model the conditional mean as a stationary
invertible ARMA process. For more information, see Chapter 8, “Regression
Components”.

RMSE Associated with Conditional Mean Forecasts
The fourth output of garchpred, MeanRMSE, is a matrix of root mean square
errors (RMSE) associated with the output forecast array MeanForecast. That
is, each element of MeanRMSE is the conditional standard deviation of the
corresponding forecast error (that is, the standard error of the forecast) in the
MeanForecast matrix. From Baillie and Bollerslev [3], Equation 19,

var ( ) ( )t t s s i
i

s

t ty E+ −
=

+= ∑ψ σ2

1
1

2

Using this equation, the computed MMSE forecasts of the conditional mean
(MeanForecast), and the standard errors of the corresponding forecasts
(MeanRMSE), you can construct approximate confidence intervals for conditional
mean forecasts. The approximation becomes more accurate during periods
of relatively stable volatility (see Baillie and Bollerslev [3] and Bollerslev,
Engle, and Nelson [8]). As heteroscedasticity in returns disappears (that is,
as the returns approach the homoscedastic, or constant variance, limit), the

7-4



Minimum Mean Square Error Forecasting

approximation is exact. You can then apply the Box & Jenkins confidence
bounds (see Box, Jenkins, and Reinsel [10], pages 133-145).

For conditional mean models with regression components (that is, X or XF
is specified), MeanRMSE is an empty matrix, []. In other words, garchpred
computes MeanRMSE only if the conditional mean is modeled as a stationary
invertible ARMA process. See Chapter 8, “Regression Components”.

7-5



7 Forecasting the Conditional Mean and Standard Deviation of Return Series

Generating Presample Observations
As discussed in “Minimum Mean Square Error Forecasting” on page 7-2,
garchpred computes MMSE forecasts. It does this by applying iterated
conditional expectations to the conditional mean and variance models one
forecast period at a time. Since these models are generally recursive in nature,
they often require presample data to initiate the iterative forecasting process.
This initial data plays the identical role that the presample time-series
inputs PreInnovations, PreSigmas, and PreSeries play in simulation and
estimation. For more information, see garchsim, garchfit, and garchinfer.

The time-series array of asset returns, Series, is a required input. The
garchpred function takes the initial returns needed to initiate forecasting of
the conditional mean directly from the last (most recent) rows of Series.

For example, consider a conditional mean model with an AR(R) autoregressive
component. In this case, garchpred takes the R observations required to
initiate the forecast of each realization of Series directly from the lastR
rows of Series.

However, garchpred obtains initial innovations and conditional standard
deviations needed to initiate forecasting of the conditional variance model
from the input array Series via the inverse filtering inference engine
garchinfer.

For more information, see:

• “Maximum Likelihood Estimation” on page 6-2

• “Presample Observations” on page 6-12

• The garchinfer function reference page

7-6



Asymptotic Behavior for Long-Range Forecast Horizons

Asymptotic Behavior for Long-Range Forecast Horizons
If you are working with long-range forecast horizons, the following asymptotic
behaviors hold for the outputs of garchpred:

• As noted earlier, the conditional standard deviation forecast
sigmaForecast, which is the first garchpred output, approaches the
unconditional standard deviation of {ε t}.

For GARCH(P,Q) models it is

σ
κ=

− −
==
∑∑1

11
G Aji

j

Q

i

P

For GJR(P,Q) models, it is

σ
κ=

− − −
===
∑∑∑1

1
2 111

G Aj Lji
j

Q

j

Q

i

P

And for EGARCH(P,Q) models, it is

σ

κ

=
∑−
=e

Gi
i

P
1

1

• GARCH effects do not affect the MMSE forecast of the conditional mean
meanForecast, which is the second garchpred output. The forecast
approaches the unconditional mean of {yt} as in the constant variance
case. That is, the presence of GARCH effects introduces dependence in
the variance process. It only affects the uncertainty of the mean forecast,
leaving the mean forecast itself unchanged.

• The mean square error of the conditional mean meanRMSE^2, which is the
square of the fourth garchpred output, approaches the unconditional
variance of {yt}.

7-7



7 Forecasting the Conditional Mean and Standard Deviation of Return Series

• EGARCH(P,Q) models represent the logarithm of the conditional variance
as the output of a linear filter, rather than the conditional variance process
itself. Because of this, the MMSE forecasts derived from EGARCH(P,Q)
models are optimal for the logarithm of the conditional variance. They are,
however, generally downward-biased forecasts of the conditional variance
process itself. The following output arrays are based on the conditional
variance forecasts:

- SigmaForecast

- SigmaTotal

- MeanRMSE

Thus, these outputs generally underestimate their true expected values for
conditional variance forecasts derived from EGARCH(P,Q) models. The
important exception is the one-period ahead forecast, which is unbiased
in all cases. For unbiased multiperiod forecasts of SigmaForecast,
SigmaTotal, and MeanRMSE, you can perform Monte Carlo simulation
using garchsim. For an example, see Chapter 11, “Example Workflow:
Estimation, Forecasting, and Simulation”.

7-8



Examples: Computing Forecasts

Examples: Computing Forecasts

In this section...

“Forecasting Using garchpred” on page 7-9

“Volatility Forecasting over Multiple Periods” on page 7-12

“Forecasting with Multiple Realizations” on page 7-15

Forecasting Using garchpred
The section “Example: Analysis and Estimation Using the Default
Model” on page 2-16 uses the default GARCH(1,1) model to model the
Deutschmark/British pound foreign-exchange series. This example shows
how to forecast with the garchpred function, using the model:

y et t= − +−6 1919 005. ε

σ σ εt t te2 006
1

2
1

21 0761 0 80598 0 15313= + +−
− −. . .

1 Use the following commands to restore your workspace if necessary:

load garchdata
dem2gbp = price2ret(DEM2GBP);
[coeff,errors,LLF,innovations,sigmas] = garchfit(dem2gbp);
garchdisp(coeff,errors)

Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 4

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C -6.1919e-005 8.4331e-005 -0.7342
K 1.0761e-006 1.323e-007 8.1341

GARCH(1) 0.80598 0.016561 48.6685
ARCH(1) 0.15313 0.013974 10.9586

7-9



7 Forecasting the Conditional Mean and Standard Deviation of Return Series

Due to space constraints, the display output of the estimation is not
included here.

2 Call garchpred to forecast the returns for the Deutschmark/British pound
foreign-exchange series using the default model parameter estimates.
Provide the specification structure coeff (the output of garchfit) and the
FX return series dem2gbp, and the number of forecast periods as input:

Note The following example results appear in Short E numeric format
for readability. Select File > Preferences > Command Window > Text
display: short e before starting the example to duplicate this format.

Use the following command to forecast the conditional mean and standard
deviation in each period of a 10-period forecast horizon:

[sigmaForecast,meanForecast] = garchpred(coeff,dem2gbp,10);
[sigmaForecast,meanForecast]
ans =

3.8340e-003 -6.1919e-005
3.8954e-003 -6.1919e-005
3.9535e-003 -6.1919e-005
4.0084e-003 -6.1919e-005
4.0603e-003 -6.1919e-005
4.1095e-003 -6.1919e-005
4.1562e-003 -6.1919e-005
4.2004e-003 -6.1919e-005
4.2424e-003 -6.1919e-005
4.2823e-003 -6.1919e-005

The result consists of the MMSE forecasts of the conditional standard
deviations and the conditional mean of the return series dem2gbp for a
10-period default horizon. They show that the default model forecast of the
conditional mean is always C=-6.1919e-05. This is true for any forecast
horizon because the expected value of any innovation, ε t, is 0.

7-10



Examples: Computing Forecasts

The conditional standard deviation forecast (sigmaForecast) changes from
period to period and approaches the unconditional standard deviation of
{ε t}, given by

σ
κ=

− −
= =
∑ ∑1

1 1
G Ai

i

P

j
j

Q

3 Calculate the unconditional standard deviation of{ε t}:

s0 = sqrt(coeff.K/(1 - sum([coeff.GARCH(:);coeff.ARCH(:)])))
s0 =

5.1300e-003

4 Plot the unconditional standard deviation, 5.1300e-003, and the
conditional standard deviations, sigmas, derived from the fitted returns.
The plot shows that the most recent values of {σt} fall below this long-run,
asymptotic value:

plot(sigmas), hold('on')
plot([0 size(sigmas,1)],[s0 s0],'red')
title('Fitted Conditional Standard Deviations')
hold('off')

7-11



7 Forecasting the Conditional Mean and Standard Deviation of Return Series

Volatility Forecasting over Multiple Periods
In addition to computing conditional mean and volatility forecasts on a
per-period basis, garchpred also computes volatility forecasts of returns
for assets held for multiple periods. For example, you can forecast the
standard deviation of the return you would obtain if you purchased shares in
a mutual fund that mirrors the performance of the New York Stock Exchange
Composite Index today, and sold it 10 days from now.

1 Use the default GARCH(1,1) model (“The Default Model” on page 2-13) to
estimate the model parameters for the NYSE data set. The following text
omits the display output of the estimation to save space:

load garchdata
nyse = price2ret(NYSE);
[coeff,errors,LLF,innovations,sigmas] = garchfit(nyse);
garchdisp(coeff,errors)

Mean: ARMAX(0,0,0); Variance: GARCH(1,1)
Conditional Probability Distribution: Gaussian

7-12



Examples: Computing Forecasts

Number of Model Parameters Estimated: 4
Standard T

Parameter Value Error Statistic
----------- ----------- ------------ -----------

C 0.00049676 0.00013137 3.7813
K 8.9128e-007 1.5776e-007 5.6495

GARCH(1) 0.91088 0.0069142 131.7410
ARCH(1) 0.079942 0.0058319 13.7077

2 Now, forecast and plot the standard deviation of the return you would
obtain if you sold the shares after 10 days.

[sigmaForecast,meanForecast,sigmaTotal] = garchpred(coeff,...
nyse,10);

plot(sigmaTotal)
ylabel('Standard Deviations')
xlabel('Periods')
title('10-Period Volatility Forecast')
hold('off')

7-13



7 Forecasting the Conditional Mean and Standard Deviation of Return Series

This plot represents the standard deviation of the returns (sigmaTotal)
expected if you held the shares for the number of periods shown on the
x-axis. The value for the tenth period is the volatility forecast of the
expected return if you purchased the shares today and held them for 10
periods. The calculation of sigmaTotal is strictly correct for continuously
compounded returns only, and is an approximation for periodically
compounded returns.

3 Convert the standard deviations sigmaForecast and sigmaTotal
to variances by squaring each element. You then see an interesting
relationship between the cumulative sum of sigmaForecast.^2 and
sigmaTotal.^2:

format short e
[cumsum(sigmaForecast.^2) sigmaTotal.^2]
ans =

5.4587e-005 5.4587e-005
1.0956e-004 1.0956e-004
1.6493e-004 1.6493e-004

7-14



Examples: Computing Forecasts

2.2068e-004 2.2068e-004
2.7680e-004 2.7680e-004
3.3331e-004 3.3331e-004
3.9018e-004 3.9018e-004
4.4743e-004 4.4743e-004
5.0504e-004 5.0504e-004
5.6302e-004 5.6302e-004

Although not equivalent, this relationship in the presence of
heteroscedasticity is like the square-root-of-time rule. This familiar
rule converts constant variances of uncorrelated returns expressed on
a per-period basis to a variance over multiple periods. This relationship
between sigmaForecast and sigmaTotal holds for the default conditional
mean model only (the relationship is valid for uncorrelated returns).

Forecasting with Multiple Realizations
This example illustrates how to forecast multiple realizations of an MA(1)
conditional mean model with an EGARCH(1,1) conditional variance model.

1 Load the NYSE data set and convert prices to returns:

load garchdata
nyse = price2ret(NYSE);

2 Create a specification structure template, and estimate and display the
estimation results:

spec = garchset('VarianceModel','EGARCH','M',1,'P',1,'Q',1,...
'Display','off');

[coeff,errors] = garchfit(spec,nyse);
garchdisp(coeff,errors)

Mean: ARMAX(0,1,0); Variance: EGARCH(1,1)
Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 6

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C 0.00022434 0.00014038 1.5981

MA(1) 0.10677 0.018795 5.6806
K -0.25399 0.031452 -8.0755

7-15



7 Forecasting the Conditional Mean and Standard Deviation of Return Series

GARCH(1) 0.97329 0.003231 301.2365
ARCH(1) 0.14514 0.011845 12.2533

Leverage(1) -0.10359 0.0081483 -12.7128

3 Based on the estimation results, do the following:

a Simulate 1000 observations for each of three independent realizations.

b Forecast the conditional standard deviations and returns for a 10-period
forecast horizon.

randn('state',0);
rand('twister',0);
[innovations,sigmas,series] = garchsim(coeff,1000,3);
[sigmaForecast,meanForecast]= garchpred(coeff,series,10);

The sigmaForecast and meanForecast outputs are 10-by-3 arrays. Both
arrays have the same number of rows as the specified number of periods.
The first row contains the standard deviations and mean forecasts for the
first period, and the last row contains these values for the most recent
period. Both arrays have the same number of columns as there are
realizations, that is, columns, in the simulated return series, series.

7-16



8

Regression Components

Introduction (p. 8-2) Introduces the concept of a regression
component in the conditional mean
model

Example: Incorporating a
Regression Model into an Estimation
(p. 8-3)

How to use the asymptotic
equivalence of autoregressive models
and linear regression models to
perform an estimation when the
conditional mean model includes a
regression component

Simulation and Inference Using a
Regression Component (p. 8-8)

Syntax for including a matrix of
explanatory data (a regression
matrix) in calls to garchsim and
garchinfer.

Forecasting Using a Regression
Component (p. 8-9)

Explains the need for both
explanatory and forecast explanatory
data when you incorporate a
regression component in a forecast

Ordinary Least Squares Regression
(p. 8-11)

Example of an ordinary least squares
regression

Regression in a Monte Carlo
Framework (p. 8-13)

Considers Monte Carlo simulation
that includes a regression component



8 Regression Components

Introduction
The GARCH Toolbox™ software allows conditional mean models with
regression components, that is, of general ARMAX(R,M,Nx) form.

y C y X t kt i
i

R

t t j
j

M

t j k
k

Nx
= + + +

=
−

=
−

=
∑ ∑ ∑φ ε θ ε β

1
1

1 1
( , )

with regression coefficients βk, and explanatory regression matrix X, in which
each column is a time series andX(t,k) denotes the tth row and kth column.

Conditional mean models with a regression component introduce additional
complexity, because GARCH Toolbox functions have no way of knowing
what the explanatory data represents or how it was generated. This is in
contrast to ARMA models, which have an explicit forecasting mechanism and
well-defined stationarity/invertibility requirements.

All GARCH Toolbox primary functions (that is, garchfit, garchinfer,
garchpred, and garchsim) accept an optional regression matrix, X, that
represents X in the equation shown here. You must do the following:

• Ensure that the regression matrix you provide is valid.

• Collect and format the past history of explanatory data you include in X.

• For forecasting, forecast X into the future to form XF.

8-2



Example: Incorporating a Regression Model into an Estimation

Example: Incorporating a Regression Model into an
Estimation

In this section...

“Fitting a Model to a Simulated Return Series” on page 8-3

“Fitting a Regression Model to the Same Return Series” on page 8-5

Fitting a Model to a Simulated Return Series
This section uses an AR(R)/GARCH(P,Q) model to fit a simulated return
series to the defined model.

1 Define an AR(2)/GARCH(1,1) model. Start by creating a specification
structure for an AR(2)/GARCH(1,1) composite model. Set the 'Display'
parameter 'off' to suppress the optimization details that garchfit
normally displays.

spec = garchset('AR',[0.5 -0.8],'C',0,'Regress',[0.5 -0.8],...
'GARCH',0.7,'ARCH',0.1,'K',0.005,...
'Display','off')

spec =
Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,1)'

Distribution: 'Gaussian'
R: 2
C: 0

AR: [0.5000 -0.8000]
Regress: [0.5000 -0.8000]

VarianceModel: 'GARCH'
P: 1
Q: 1
K: 0.0050

GARCH: 0.7000
ARCH: 0.1000

Display: 'off'

In this specification structure, spec:

• The model order fields R, M, P, and Q are consistent with the number of
coefficients in the AR, MA, GARCH, and ARCH vectors, respectively.

8-3



8 Regression Components

• Although the Regress field indicates two regression coefficients, the
Comment field still contains a question mark as a placeholder for the
number of explanatory variables.

• There is no model order field for the Regress vector, analogous to the R,
M, P, and Q orders of an ARMA(R,M)/GARCH(P,Q) model.

2 Fit the model to a simulated return series. Simulate 2000 observations
of the innovations, conditional standard deviations, and returns for the
AR(2)/GARCH(1,1) process defined in spec. Use the model defined in
spec to:

a Estimate the parameters of the simulated return series.

b Compare the parameter estimates to the original coefficients in spec.

randn('state',0);
rand('twister',0);
[e,s,y] = garchsim(spec,2000,1);
[coeff,errors] = garchfit(spec,y);
garchdisp(coeff,errors)

Mean: ARMAX(2,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 6

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C -0.00044755 0.0034623 -0.1293

AR(1) 0.50257 0.01392 36.1049
AR(2) -0.8002 0.013981 -57.2344

K 0.0050532 0.001971 2.5637
GARCH(1) 0.70954 0.095319 7.4439
ARCH(1) 0.083296 0.022665 3.6752

The estimated parameters, shown in the Value column, are close to the
true coefficients in spec.

Because you specified no explanatory regression matrix as input to
garchsim and garchfit, these functions ignore the regression coefficients

8-4



Example: Incorporating a Regression Model into an Estimation

(Regress). The garchdisp output shows a 0 for the order of the regression
component.

Fitting a Regression Model to the Same Return Series
To illustrate the use of a regression matrix, fit the return series y, an AR(2)
process in the mean, to a regression model with two explanatory variables.
The regression matrix consists of the first- and second-order lags of the
simulated return series y. The return series y was simulated in “Fitting a
Model to a Simulated Return Series” on page 8-3.

1 Remove the AR component. First, remove the AR component from the
specification structure:

spec = garchset(spec,'R',0,'AR',[])
spec =

Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(1,1)'
Distribution: 'Gaussian'

C: 0
Regress: [0.5000 -0.8000]

VarianceModel: 'GARCH'
P: 1
Q: 1
K: 0.0050

GARCH: 0.7000
ARCH: 0.1000

Display: 'off'

2 Create the regression matrix. Create a regression matrix of first- and
second-order lags using the simulated returns vector y from “Fitting a
Model to a Simulated Return Series” on page 8-3 as input. Examine the
first 10 rows of y and the corresponding rows of the lags:

X = lagmatrix(y,[1 2]);
[y(1:10) X(1:10,:)]
ans =

0.0562 NaN NaN
0.0183 0.0562 NaN

-0.0024 0.0183 0.0562
-0.1506 -0.0024 0.0183
-0.3937 -0.1506 -0.0024

8-5



8 Regression Components

-0.0867 -0.3937 -0.1506
0.1075 -0.0867 -0.3937
0.2225 0.1075 -0.0867
0.1044 0.2225 0.1075
0.1288 0.1044 0.2225

3 Examine the regression matrix. A NaN (Not-a-Number) in the resulting
matrix X indicates the presence of a missing observation. If you use X to fit
a regression model to y, garchfit produces an error:

[coeff,errors] = garchfit(spec,y,X);
??? Error using ==> garchfit
Regression matrix 'X' has insufficient number of observations.

The error occurs because there are fewer valid rows (rows without a NaN)
in the regression matrix X than there are observations in y. The returns
vector y has 2000 observations, but the most recent number of valid
observations in X is only 1998.

4 Repair the regression matrix. You can do one of two things in order to
proceed. For a return series of this size, it makes little difference which
option you choose:

• Strip off the first two observations in y.

• Replace all NaNs in X with some reasonable value.
This example continues by replacing all NaNs with the sample mean of y.
Use the MATLAB® function isnan to identify NaNs and the function mean
to compute the mean of y:

X(isnan(X)) = mean(y);
[y(1:10), X(1:10,:)]
ans =

0.0562 0.0004 0.0004
0.0183 0.0562 0.0004

-0.0024 0.0183 0.0562
-0.1506 -0.0024 0.0183
-0.3937 -0.1506 -0.0024
-0.0867 -0.3937 -0.1506
0.1075 -0.0867 -0.3937
0.2225 0.1075 -0.0867

8-6



Example: Incorporating a Regression Model into an Estimation

0.1044 0.2225 0.1075
0.1288 0.1044 0.2225

Note If the number of valid rows in X exceeds the number of observations
in y, then garchfit includes in the estimation only the most recent rows of
X, equal to the number of observations in y.

5 Fit the regression model. Now the explanatory regression matrix X is
compatible with the return series vector y. Use garchfit to estimate the
model coefficients for the return series using the regression matrix, and
display the results:

[coeffX,errorsX] = garchfit(spec,y,X);
garchdisp(coeffX,errorsX)

Mean: ARMAX(0,0,2); Variance: GARCH(1,1)
Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 6

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C -0.00044754 0.0034628 -0.1292

Regress(1) 0.50257 0.01392 36.1048
Regress(2) -0.8002 0.013981 -57.2346

K 0.0050526 0.0019708 2.5637
GARCH(1) 0.70957 0.095311 7.4447
ARCH(1) 0.083292 0.022663 3.6752

These estimation results are like those shown for the AR model in the
section “Fitting a Model to a Simulated Return Series” on page 8-3. This
similarity illustrates the asymptotic equivalence of autoregressive models
and linear regression models.

This part of the example illustrates the extra steps involved in formatting
the explanatory matrix. It also highlights the additional complexity
involved in modeling conditional means with regression components.

8-7



8 Regression Components

Simulation and Inference Using a Regression Component
Including a regression component with garchsim and garchinfer is like
including one with garchfit. (See “Example: Incorporating a Regression
Model into an Estimation” on page 8-3.)

For example, the following command simulates a single realization of 2000
observations of the innovations, conditional standard deviations, and returns:

randn('state',0);
rand('twister',0);
[e,s,y] = garchsim(spec,2000,1,[],X);

You can also use the same regression matrix X to infer the innovations and
conditional standard deviations from the returns:

[eInfer,sInfer] = garchinfer(spec,y,X);

8-8



Forecasting Using a Regression Component

Forecasting Using a Regression Component

In this section...

“Using Forecasted Explanatory Data” on page 8-9

“Generating Forecasted Explanatory Data” on page 8-10

Using Forecasted Explanatory Data
To forecast the conditional mean of a return series y in each period of a
10-period forecast horizon, call garchpred with the following syntax:

NumPeriods = 10;
[sigmaForecast,meanForecast] = ...

garchpred(spec,y,NumPeriods,X,XF);

where X is the same regression matrix shown in “Fitting a Regression Model
to the Same Return Series” on page 8-5, and XF is a regression matrix of
forecasted explanatory data. In fact, XF represents a projection into the future
of the explanatory data in X. This command produces an error if you execute it
in your current workspace, because XF is missing.

XF must have the same number of columns as X. In each column of XF,
the first row contains the one-period-ahead forecast, the second row the
two-period-ahead forecast, and so on. If you specify XF, the number of
rows (forecasts) in each column must equal or exceed the forecast horizon,
NumPeriods. When the number of forecasts in XF exceeds the forecast horizon,
garchpred uses only the first NumPeriods forecasts. If XF is empty ([]) or
missing, the conditional mean forecast, meanForecast, has no regression
component.

If you use a regression matrix X for simulation and/or estimation, also use
a regression matrix when calling garchpred. This is because garchpred
requires a complete conditional mean specification to correctly infer the
innovations {ε t} from the observed return series {yt}. Typically, the same
regression matrix is used for simulation, estimation, and forecasting.

8-9



8 Regression Components

Forecasting Only the Conditional Standard Deviation
To forecast the conditional standard deviation (that is, sigmaForecast), XF is
unnecessary, and garchpred ignores it if it is present. This is true even if you
included the matrix X in the simulation and/or estimation process.

For example, you could use the following syntax to forecast only the conditional
standard deviation of the innovations {ε t} over a 10-period forecast horizon:

sigmaForecast = garchpred(spec,y,10,X);

Forecasting the Conditional Mean
To forecast the conditional mean (that is, meanForecast), specify both X and
XF. For example, to forecast the conditional mean of the return series y over a
10-period forecast horizon:

[sigmaForecast,meanForecast] = garchpred(spec,y,10,X,XF);

Generating Forecasted Explanatory Data
Typically, the regression matrix X contains the observed returns of a suitable
market index, collected over the same time interval as the observed data of
interest. In this case, X is most likely a vector that corresponds to a single
explanatory variable. You must find a way to generate the forecast of X (that
is, XF).

One approach is to use garchfit to fit a suitable ARMA(R,M) model to the
returns in X, and then use garchpred to forecast the market index returns into
the future. Specifically, since you are not interested in fitting the volatility of
X, you can simplify the estimation process by assuming a constant conditional
variance model, for example, ARMA(R,M)/GARCH(0,0).

8-10



Ordinary Least Squares Regression

Ordinary Least Squares Regression
This example illustrates an ordinary least squares regression, by simulating
a return series that scales the daily return values of the New York Stock
Exchange Composite Index. It also provides an example of a constant
conditional variance model.

1 Load the NYSE data set and convert the price series to a return series:

load garchdata
nyse = price2ret(NYSE);

2 Create a specification structure. Set the Display flag to 'off' to suppress
the optimization details that garchfit usually displays:

spec = garchset('P',0,'Q',0,'C',0,...
'Regress',1.2,...
'K',0.00015,...
'Display','off')

spec =
Comment: 'Mean: ARMAX(0,0,?); Variance: GARCH(0,0)'

Distribution: 'Gaussian'
C: 0

Regress: 1.2000
VarianceModel: 'GARCH'

K: 1.5000e-004
Display: 'off'

3 Simulate a single realization of 2000 observations, fit the model, and
examine the results:

randn('state',0);
rand('twister',0);
[e,s,y] = garchsim(spec,2000,1,[],nyse);
[coeff,errors] = garchfit(spec,y,nyse);
garchdisp(coeff,errors)

Mean: ARMAX(0,0,1); Variance: GARCH(0,0)

Conditional Probability Distribution: Gaussian

8-11



8 Regression Components

Number of Model Parameters Estimated: 3

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C 4.9091e-006 0.00027114 0.0181

Regress(1) 1.2251 0.028909 42.3786
K 0.00014662 4.6945e-006 31.2334

These estimation results are just the ordinary least squares (OLS)
regression results. In fact, in the absence of GARCH effects and assuming
Gaussian innovations, maximum likelihood estimation and least squares
regression are the same thing.

Note This example appears purely for illustrative purposes. Although
you can use the GARCH Toolbox™ software to perform OLS, to do so is
computationally inefficient and not recommended.

8-12



Regression in a Monte Carlo Framework

Regression in a Monte Carlo Framework
In the general case, these functions process multiple realizations (that is,
sample paths) of univariate time series:

• garchsim

• garchinfer

• garchpred

The outputs of garchsim and the observed return series input to garchpred
and garchinfer can be time-series matrices in which each column represents
an independent realization. garchfit is different, because the input observed
return series of interest must be a vector (that is, a single realization).

When simulating, inferring, and forecasting multiple realizations, the
appropriate toolbox function applies a given regression matrix X to each
realization of a univariate time series. For example, in the following
command, garchsim applies a given X matrix to all 10 columns of the output
series {ε t}, {σt}, and {yt}:

NumSamples = 100;
NumPaths = 10;
randn('state',0);
rand('twister',0);
[e,s,y] = garchsim(spec,NumSamples,NumPaths,[],X);

In a true Monte Carlo simulation of this process, including a regression
component, you would call garchsim inside a loop 10 times, once for each
path. Each iteration would pass in a unique realization of X and produce a
single-column output.

8-13



8 Regression Components

8-14



9

Univariate Unit Root Tests

Introduction (p. 9-2) Augmented Dickey-Fuller and
Phillips-Perron univariate unit root
tests.

Dickey-Fuller Tests (p. 9-4) Three augmented Dickey-Fuller unit
root tests: dfARTest, dfARDTest,
and dfTSTest.

Phillips-Perron Tests (p. 9-6) Three Phillips-Perron unit root
tests: ppARTest, ppARDTest, and
ppTSTest.

How to Test for Unit Roots: Inputs
and Outputs (p. 9-8)

How to use the common
interface to the Dickey-Fuller
and Phillips-Perron functions to test
for unit roots

Interpretation of Results (p. 9-11) Pitfalls in interpreting unit root tests

Examples: Unit Root Tests (p. 9-13) Conducts two tests: one with a trend
stationary component, and a second
with a drift component



9 Univariate Unit Root Tests

Introduction

In this section...

“Critical Values” on page 9-2

“Serial Dependence” on page 9-2

Critical Values
The GARCH Toolbox™ software supports several members of the
Phillips-Perron and augmented Dickey-Fuller classes of univariate unit root
tests. The test statistics for these tests are straightforward to evaluate by
ordinary least-squares regression, but many of the most common parametric
cases follow nonstandard distributions. Therefore, the test statistics need to
be compared to critical values derived from Monte Carlo simulations.

The GARCH Toolbox software derives critical values from the simulations for
various combinations of sample size and significance level. The significance
level sets the probability of a Type I error of incorrectly rejecting the null
hypothesis of the underlying process when it is true. Specifically, five million
Monte Carlo trials of a given sample size are generated using independent,
identically distributed standard Gaussian disturbances. For each sample size,
tabulated critical values are the quantiles associated with given cumulative
probabilities (significance levels) of the simulated test statistic.

The test suite supports sample sizes as small as 10 and significance levels
ranging from 0.001 to 0.999. For small samples, the critical values are exact
only for Gaussian residuals. As the sample size becomes larger, critical values
are also valid for non-Gaussian residuals. All univariate unit root tests are
conventional single-tailed tests.

Serial Dependence
Although augmented Dickey-Fuller and Phillips-Perron tests both attempt
to compensate for serial dependence in the residuals process, they do so in
different ways. For a given parametric specification of the null hypothesis,
Phillips-Perron tests retain the same OLS (ordinary least squares) regression
model, but they adjust the test statistics to account for serially dependent
residuals. The augmented Dickey-Fuller tests, by contrast, add lagged

9-2



Introduction

changes of the observed time series as explanatory variables in the OLS
regression model. Hamilton [22] and Greene [19] contain more discussion of
these tests.

9-3



9 Univariate Unit Root Tests

Dickey-Fuller Tests

In this section...

“Definitions of Operators” on page 9-4

“dfARTest” on page 9-4

“dfARDTest” on page 9-4

“dfTSTest” on page 9-5

Definitions of Operators
The GARCH Toolbox™ software supports three augmented Dickey-Fuller
unit root hypothesis tests. In the following equations, define yt and ε t as the
univariate time series of observed data and model residuals, respectively.

Also, define the first difference operator Δ such that Δy y yt t t= − −1 .

dfARTest
The first form of the augmented Dickey-Fuller unit root test assumes that a
zero drift unit root process underlies the observed time series yt. Specifically,
under the null hypothesis, the true underlying process is a zero drift
ARIMA(P,1,0) model

y y y y yt t t t p t p t= + + + + +− − − −1 1 1 2 2ζ ζ ζ εΔ Δ Δ...

which is equivalent to an integrated AR(P+1) model.

As an alternative, the estimated OLS regression model is

y y y y yt t t t p t p t= + + + + +− − − −φ ζ ζ ζ ε1 1 1 2 2Δ Δ Δ...

for some AR(1) coefficient φ < 1.

dfARDTest
The second form of the augmented Dickey-Fuller unit root test also assumes
that a zero drift unit root process underlies the observed time series yt.

9-4



Dickey-Fuller Tests

Specifically, under the null hypothesis, the true underlying process is a zero
drift ARIMA(P,1,0) model

y y y y yt t t t p t p t= + + + + +− − − −1 1 1 2 2ζ ζ ζ εΔ Δ Δ...

which is equivalent to an integrated AR(P+1) model.

In this case, the alternative estimated OLS regression model is

y C y y y yt t t t p t p t= + + + + + +− − − −φ ζ ζ ζ ε1 1 1 2 2Δ Δ Δ...

for some constant C and AR(1) coefficient φ < 1.

dfTSTest
The third form of the augmented Dickey-Fuller unit root test assumes that
a unit root process with arbitrary drift underlies the observed time series
yt. Specifically, under the null hypothesis, the true process underlying the
observed time series yt is an ARIMA(P,1,0) model with drift

y C y y y yt t t t p t p t= + + + + + +− − − −1 1 1 2 2ζ ζ ζ εΔ Δ Δ...

which is equivalent to an integrated AR(P+1) model.

As an alternative, the estimated OLS regression model includes a time trend,

y C y t y y yt t t t p t p t= + + + + + + +− − − −φ δ ζ ζ ζ ε1 1 1 2 2Δ Δ Δ...

for some constant C, AR(1) coefficient φ < 1, and time trend stationary
coefficient δ.

9-5



9 Univariate Unit Root Tests

Phillips-Perron Tests

In this section...

“Definitions of Operators” on page 9-6

“ppARTest” on page 9-6

“ppARDTest” on page 9-6

“ppTSTest” on page 9-7

Definitions of Operators
The GARCH Toolbox™ software supports three Phillips-Perron unit root
hypothesis tests. In the following equations, define yt andε t as the univariate
time series of observed data and model residuals, respectively.

ppARTest
The first form of the Phillips-Perron unit root test assumes that a zero drift
unit root process underlies the observed time series yt. Under the null
hypothesis, the assumed underlying process is

y yt t t= +−1 ε

As an alternative, the estimated OLS regression model is

y yt t t= +−φ ε1

for some AR(1) coefficient φ < 1.

ppARDTest
The second form of the Phillips-Perron unit root test also assumes that a zero
drift unit root process underlies the observed time series yt. Under the null
hypothesis, the assumed underlying process is

y yt t t= +−1 ε

9-6



Phillips-Perron Tests

As an alternative, the estimated OLS regression model is

y C yt t t= + +−φ ε1

for some constant C and AR(1) coefficient φ < 1.

ppTSTest
The third form of the Phillips-Perron unit root test assumes that a unit root
process with arbitrary drift underlies the observed time series yt. Under the
null hypothesis, the assumed underlying process is

y C yt t t= + +−1 ε

for an arbitrary constant C. As an alternative, the estimated OLS regression
model is

y C y tt t t= + + +−φ δ ε1

for some constant C, AR(1) coefficient φ < 1, and time trend stationary
coefficient δ.

9-7



9 Univariate Unit Root Tests

How to Test for Unit Roots: Inputs and Outputs

In this section...

“About the Common Interface” on page 9-8

“Lags” on page 9-8

“Significance Level” on page 9-9

“TestType” on page 9-9

“Outputs” on page 9-10

About the Common Interface
All of the Dickey-Fuller and Phillips-Perron functions share a common
interface. In addition to a univariate time series yt to be tested, all functions
accept the following arguments:

• An integer input vector Lags.

• A vector Alpha, to set significance levels.

• A character string TestType, to select the form of the test.

The output vectors are H, PValue, TestStat, and CriticalValue.

See “Examples: Unit Root Tests” on page 9-13 for more information about the
syntax required for both input and output parameters. The examples also
illustrate how to interpret tests results.

Lags
The input vector Lags always serves as a correction for serial correlation of
residuals. The precise meaning of the vector, however, differs between the
Dickey-Fuller and the Phillips-Perron tests:

• In Dickey-Fuller tests, Lags indicates the number of lagged changes or
first differences in yt that are included in the OLS regression model. It is
represented as p in the Dickey-Fuller equations.

9-8



How to Test for Unit Roots: Inputs and Outputs

• In Phillips-Perron tests, Lags indicates the number of lagged autocovariance
terms included in the Newey-West estimation of the asymptotic variance of
the sample mean of residuals.

In all cases, setting Lags = 0 applies no correction for serial correlation, and
the Dickey-Fuller and Phillips-Perron tests produce identical results.

Significance Level
The significance level Alpha always denotes the same probability, or set of
probabilities, for all six unit root tests. The significance level is the probability,
in the appropriate tail of the distribution, of rejecting the null hypothesis when
it is in fact true and should be accepted. See “Critical Values” on page 9-2.

TestType
The input TestType specifies the basic form of the test used to construct
the test statistic. The three test types are AR, t, and F. All three tests are
conventional, single-tailed tests.

AR and t Tests
Suppose you conduct a Dickey-Fuller or Phillips-Perron test where you specify
no correction for serial dependence (Lags = 0). Two possibilities exist:

• Set TestType = 'AR' to select a unit root test based on the AR(1)
regression coefficient φ, without the need to calculate the standard error.
In this case, the test statistic χ based on T observations of yt is χ = T(φ – 1).

• Set TestType = 't' to select a unit root test based on the studentized t test.
In this case, the test statistic χ based on the AR(1) regression coefficient φ
and its standard error σφ is χ = (φ – 1)/σφ.

When you specify a correction for serial dependence (Lags > 0), the test
function adjusts the computation of χ . See Hamilton (1994) for details.

Both the AR and the t test are lower-tailed tests. The null hypothesis is
rejected if the test statistic is less than the critical value.

9-9



9 Univariate Unit Root Tests

F Tests
Two Dickey-Fuller tests, dfARDTest and dfTSTest, let you specify joint OLS
F tests. For dfARDTest, the F test is of a unit root (Φ= 1) with zero drift (C=0).
For dfTSTest, the F test is of a unit root (Φ= 1) with a zero trend stationary
coefficient (δ = 1). In both cases, the joint F test is an upper-tailed test. Reject
the null hypothesis if the test statistic is greater than the critical value.

Outputs
The six unit root tests return the same set of output arguments. The first
output is a vector of logical indicators, H. H = 0 indicates acceptance of the null
hypothesis. H = 1 indicates rejection of the null hypothesis. Each element of H
corresponds to a particular lag of Lags and significance level of Alpha. Each
element of H also corresponds to the following:

• An output vector of p-values called PValue.

• A vector of test statistics called TestStat.

• A vector of critical values called CriticalValue.

9-10



Interpretation of Results

Interpretation of Results
Analysts often associate rejection of the null unit root hypothesis with the
assertion of a stationary AR(1) model. They assume that acceptance of the
alternative hypothesis implies that the time series yt is stationary. This
assumption is correct in most — but not all — practical applications. In fact,
there are many reasons why you should interpret unit root test results with
care.

For instance, an AR(1) model is stationary if and only if the magnitude of the
AR coefficient is strictly less than 1 (that is, |φ| < 1). Assume, for example,
that the AR coefficient estimated by OLS is Φ= -2. A test statistic based on
this coefficient is well under the applicable critical value. You correctly reject
the null hypothesis. Yet the time series is nonstationary!

Another pitfall is to confuse unit root tests with random walk tests. For a
unit root model to be a random walk, the residuals are generally assumed
to be independent and identically distributed Gaussian random variables.
Other forms of random walk exist, but all require the residuals to be at least
uncorrelated. Since unit root tests are often designed to compensate for serial
correlation, unit root processes are more general than random walks. Put
another way, the unit root null hypothesis includes a random walk.

Given a stationary process of finite sample size, a unit root process exists that
describes it arbitrarily well. Thus, you should use a unit root test to formulate
a well-performing, simple representation of an observed time series. Do not
use the test only to determine whether the true underlying process actually
contains a unit root.

Although this section includes general comments that apply to any unit root
test, there are subtleties that pertain to individual tests in the augmented
Dickey-Fuller suite. Specifically, in certain circumstances the results of
Dickey-Fuller tests can be particularly sensitive to the form of the test
statistic.

Augmented Dickey-Fuller tests compensate for serial dependence by adding
lagged changes of the observed time series as explanatory variables in the
OLS regression model. The null hypothesis assumes that the polynomial
associated with the coefficients of lagged changes is stationary. That is, the
null hypothesis posits that the specified time series is nonstationary in levels,

9-11



9 Univariate Unit Root Tests

but stationary in first differences. If a nonstationary polynomial of lagged
changes is found, a warning message appears, indicating that the test results
may be unreliable.

In fact, in these situations, the test statistics, and therefore the
acceptance/rejection decision, might be entirely inconsistent between the two
forms of the test as indicated by the TestType input. The t form of the test
may indicate a very strong rejection of the unit root null hypothesis, while
the AR form may indicate a very strong acceptance. In these situations, the t
form of the test is likely more reliable, although the maintained assumptions
underlying each type of test are unlikely to be satisfied.

Situations in which a nonstationary polynomial is found may require special
attention, and subjective judgment regarding the nature of the observed
data. For example, a nonstationary polynomial may indicate that the data
is nonstationary in both levels and first differences. In this case, you
can appropriately reject the unit root null. In many cases it is helpful to
preprocess the data, perhaps differencing or taking logarithms, to better
condition the time series.

9-12



Examples: Unit Root Tests

Examples: Unit Root Tests

In this section...

“About These Examples” on page 9-13

“Testing GDP by OLS Regression with a Stationary Component” on page
9-14

“Testing T-Bill Rate by OLS Regression with a Drift Component” on page
9-17

About These Examples
The following examples make use of two economic time series from the U.S.
Federal Reserve Economic Data (FRED) Web site, maintained by the Federal
Reserve Bank of St. Louis: http://research.stlouisfed.org/fred.

The first example is a quarterly time series of seasonally adjusted, annualized,
real Gross Domestic Product (GDP) of the United States from January 1, 1947
to April 1, 2005. It is quoted in billions of year 2000 U.S. dollars, for a total of
234 quarterly observations (Series GDPC96).

The second is a monthly time series of the three-month U.S. Treasury Bill
secondary market rate from January 1, 1947 to September 1, 2005. It is
quoted in percent on an annualized discount rate basis, for a total of 705
monthly observations (Series TB3MS).

To prepare the examples, load unitRootData, the file that stores the observed
GDP and T-Bill time series and the associated serial dates:

load unitRootData
whos

Name Size Bytes Class

GDP 234x1 1872 double array
GDPDates 234x1 1872 double array
TBillDates 705x1 5640 double array
TBillRates 705x1 5640 double array

Grand total is 1878 elements using 15024 bytes

9-13

http://research.stlouisfed.org/fred


9 Univariate Unit Root Tests

Testing GDP by OLS Regression with a Stationary
Component

1 To launch the first example, plot GDP against time:

plot(GDPDates, GDP), datetick('x'), grid('on')
title('US Real GDP (Quarterly Data, Annualized Year 2000 USD)')

2 This plot suggests exponential growth in the time series for real GDP.
Therefore, take the logarithm of GDP data to obtain a linear time trend
in the plot:

y = log(GDP);
plot(GDPDates, y), datetick('x'), grid('on')
title('Logarithm of US Real GDP')

9-14



Examples: Unit Root Tests

3 Base your unit root test on an OLS regression model that includes a
trend stationary component. Compare results of the Dickey-Fuller and
Phillips-Perron trend stationary t tests, using dfTSTest and ppTSTest at
several common lags and at the 5% significance level:

[h, pValue, tStat, cValue] = dfTSTest(y, [0:4], ...
[0.05 0.05 0.05 0.05 0.05], 't');
[H, PValue, TStat, CValue] = ppTSTest(y, [0:4], 0.05); ...

Note the input argument lists in this example. The inputs to the
Dickey-Fuller test explicitly specify a 5% significance level and a
studentized t test for all tests. In contrast, the call to the Phillips-Perron
test specifies a scalar 5% significance level. This is scalar-expanded to
match the length of the Lags input. In addition, when you do not specify a
TestType, the syntax for the Phillips-Perron test accepts the default t test.

All elements of the logical indicator variables, h and H, are logical zero.
This indicates that there is no significant statistical evidence to reject the
null hypothesis of a unit root (Φ= 1):

9-15



9 Univariate Unit Root Tests

[h ; H]
ans =

0 0 0 0 0
0 0 0 0 0

4 Furthermore, compare the p-values, OLS test statistics, and critical values
of the Phillips-Perron test in the first line and the Dickey-Fuller test in
the second line:

[pValue ; PValue]
ans =

0.6058 0.1841 0.0871 0.1964 0.3372
0.6058 0.4755 0.3923 0.3555 0.3484

[tStat ; TStat]
ans =

-1.9708 -2.8428 -3.2012 -2.8079 -2.5181
-1.9708 -2.2364 -2.4059 -2.4808 -2.4952

[cValue ; CValue]
ans =

-3.4315 -3.4315 -3.4316 -3.4317 -3.4318
-3.4315 -3.4315 -3.4315 -3.4315 -3.4315

The first element of each Phillips-Perron output vector matches the first
element of the Dickey-Fuller output vector. This confirms that the two
tests are identical when Lags = 0, that is, when you make no correction
for dependence.

5 Similarly, you can compare AR tests at unique combinations of lags and
significance levels:

[h, pValue, tStat, cValue] = dfTSTest(y, [0 1 2]', ...
[0.01 0.025 0.05], 'AR');

[H, PValue, TStat, CValue] = ppTSTest(y, [1 2 3]',...
[0.01 0.05 0.075], 'AR');

[h H]
ans =

0 0
0 0

9-16



Examples: Unit Root Tests

0 0

[pValue PValue]
ans =

0.6683 0.5199
0.1721 0.4156
0.0717 0.3671

[tStat TStat]
ans =

-7.2381 -9.4831
-15.1154 -11.0620
-19.4593 -11.7962

[cValue CValue]
ans =

-28.3742 -28.3742
-24.3272 -21.1594
-21.1554 -19.2414

6 Now examine the Dickey-Fuller joint F test of a unit root (Φ= 1) with zero
trend stationary coefficient (δ = 0) under the same conditions:

[h, pValue, tStat, cValue] = dfTSTest(y, ...
[0 1 2]', [0.01 0.025 0.05], 'F');

[h, pValue, tStat, cValue]
ans =

0 0.6207 2.5622 8.4814
0 0.1891 4.4635 7.2834
0 0.0884 5.5669 6.3548

In each of these comparisons, the row-and-column orientation of the Lags
input vector determines the row-and-column orientation of the output
vectors.

Testing T-Bill Rate by OLS Regression with a Drift
Component

1 To start the second example, plot the three-month T-Bill rate against time:

9-17



9 Univariate Unit Root Tests

plot(TBillDates, TBillRates), datetick('x'), grid('on')
title('US 3-Month T-Bill Rate (Monthly Data, ...

Annual Percent Discount Rate)')

2 The interest rate for Treasury Bills does not exhibit a time trend. However,
the plot of three-month T-Bill data suggests that the OLS regression model
should include an additive constant to account for drift. To incorporate drift
in your model, use ppARDTest and dfARDTest. This example compares the
results of these two tests:

[h, pValue, tStat, cValue] = dfARDTest(TBillRates, [0:4]', ...
0.05, 't');
[H, PValue, TStat, CValue] = ppARDTest(TBillRates, [0:4]');

3 The following call to the Phillips-Perron test uses the default significance
level for input Alpha, 0.05, and the default TestType, t.

Now compare the results:

9-18



Examples: Unit Root Tests

[h, H, pValue, PValue, tStat, TStat, cValue, CValue]

ans =

0 0 0.2133 0.2133 -2.1889 -2.1889 -2.8667 -2.8667

1.0000 0 0.0428 0.1280 -2.9286 -2.4531 -2.8667 -2.8667

0 0 0.1313 0.1166 -2.4409 -2.4995 -2.8667 -2.8667

0 0 0.1191 0.1182 -2.4887 -2.4925 -2.8667 -2.8667

0 0 0.1235 0.1204 -2.4700 -2.4831 -2.8667 -2.8667

4 These results indicate that the null hypothesis of a unit root is rejected in
the second Dickey-Fuller case at the 5% significance level, where H = 1 at
Lags = 1. If, however, you test a first-order correction at a significance
level smaller than the reported p-value of 0.0428, such as 0.03, the null
hypothesis is now accepted:

[h,pValue,tStat,cValue] = dfARDTest(TBillRates,1,0.03,'t');
[h,pValue,tStat,cValue]
ans =

0 0.0428 -2.9286 -3.0633

5 Lastly, examine the Dickey-Fuller joint F test of a unit root (Φ= 1) with
zero drift (C = 0):

[h,pValue,tStat,cValue] = dfARDTest(TBillRates,[0 2 4]', ...
[0.01 0.02 0.1]);
[h,pValue,tStat,cValue]
ans =

0 0.2133 -2.1889 -3.4405
0 0.1313 -2.4409 -3.2078
0 0.1235 -2.4700 -2.5696

9-19



9 Univariate Unit Root Tests

9-20



10

Model Selection and
Analysis

Using The Autocorrelation and
Partial Autocorrelation Functions
(p. 10-2)

How to use the autocorrelation and
partial autocorrelation functions for
model selection and assessment

Likelihood Ratio Tests (p. 10-3) Uses likelihood ratio tests to
determine whether evidence exists
to support the use of a specific
GARCH model

Akaike and Bayesian Information
Criteria (p. 10-6)

Uses Akaike (AIC) and Bayesian
(BIC) information criteria to compare
alternative models

Equality Constraints and Parameter
Significance (p. 10-9)

Sets and constrains model
parameters to assess their
significance

Equality Constraints and Initial
Parameter Estimates (p. 10-14)

Shows the need for a complete
model specification when you specify
equality constraints

Examples: Simplicity and Parsimony
(p. 10-17)

Why you should use the smallest,
simplest model that adequately
describes your data



10 Model Selection and Analysis

Using The Autocorrelation and Partial Autocorrelation
Functions

See “Example: Analysis and Estimation Using the Default Model” on
page 2-16 for information about using the autocorrelation and partial
autocorrelation functions as qualitative guides in the process of model
selection and assessment. This example also introduces the following
functions:

• The Ljung-Box-Pierce Q-test

• Engle’s ARCH test functions

10-2



Likelihood Ratio Tests

Likelihood Ratio Tests

Testing Support for a GARCH(2,1) Model
“Example: Analysis and Estimation Using the Default Model” on page 2-16
shows that the default GARCH(1,1) model explains most of the variability
of the daily returns observations of the Deutschemark/British Pound
foreign-exchange rate. This example uses the lratiotest function to
determine whether evidence exists to support the use of a GARCH(2,1) model.
The example first fits the Deutschmark/British Pound foreign-exchange rate
return series to the default GARCH(1,1) model. It then fits the same series
using the following, more elaborate, GARCH(2,1) model:

y Ct t= + ε

σ κ σ σ εt t t tG G A2
1 1

2
2 2

2
1 1

2= + + +− − −

1 If the Deutschmark/British Pound foreign-exchange rate data is not in
your workspace, restore it:

load garchdata
dem2gbp = price2ret(DEM2GBP);

2 Estimate the GARCH(1,1) model:

a Create a GARCH(1,1) default model with Display set to 'off':

spec11 = garchset('P',1,'Q',1,'Display','off');

b Estimate the model, including the maximized log-likelihood function
value, and display the results:

[coeff11,errors11,LLF11] = garchfit(spec11,dem2gbp);
garchdisp(coeff11,errors11)
Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 4

Standard T

10-3



10 Model Selection and Analysis

Parameter Value Error Statistic
---------- ----------- ------------ -----------

C -6.1919e-005 8.4331e-005 -0.7342
K 1.0761e-006 1.323e-007 8.1341

GARCH(1) 0.80598 0.016561 48.6685
ARCH(1) 0.15313 0.013974 10.9586

3 Estimate the GARCH(2,1) model:

a Create a GARCH(2,1) specification structure with Display set to 'off':

spec21 = garchset('P',2,'Q',1,'Display','off');

b Then estimate the GARCH(2,1) model and display the results. Again,
calculate the maximized log-likelihood function value.

[coeff21,errors21,LLF21] = garchfit(spec21,dem2gbp);
garchdisp(coeff21,errors21)
Mean: ARMAX(0,0,0); Variance: GARCH(2,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 5

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C -5.0071e-005 8.4756e-005 -0.5908
K 1.1196e-006 1.5358e-007 7.2904

GARCH(1) 0.49404 0.11249 4.3918
GARCH(2) 0.2938 0.10295 2.8537
ARCH(1) 0.16805 0.016589 10.1305

4 Perform the Likelihood Ratio Test.

Of the two models, GARCH(1,1) and GARCH(2,1), that are associated with
the same return series:

• The default GARCH(1,1) model is a restricted model. That is, you
can interpret a GARCH(1,1) model as a GARCH(2,1) model with the
restriction that G2 = 0.

10-4



Likelihood Ratio Tests

• The more elaborate GARCH(2,1) model is an unrestricted model.
Since garchfit enforces no boundary constraints during either of the two
estimations, you can apply a likelihood ratio test (LRT) (see Hamilton [22],
pages 142-144).

In this context, the unrestricted GARCH(2,1) model serves as the
alternative hypothesis; that is, the hypothesis the example gathers
evidence to support. The restricted GARCH(1,1) model serves as the null
hypothesis, that is, the hypothesis the example assumes is true, lacking
evidence to support the alternative.

The LRT statistic is asymptotically chi-square distributed with degrees of
freedom equal to the number of restrictions imposed.

a Since the GARCH(1,1) model imposes one restriction, specify one degree
of freedom in your call to lratiotest. Test the models at the 0.05
significance level:

[H,pValue,Stat,CriticalValue] = lratiotest(LLF21,LLF11,...
1,0.05);

[H,pValue,Stat,CriticalValue]
ans =

1.0000 0.0218 5.2624 3.8415

H = 1 indicates that there is enough statistical evidence in support of the
GARCH(2,1) model.

b Alternatively, at the 0.02 significance level:

[H,pValue,Stat,CriticalValue] = lratiotest(LLF21,LLF11,1,0.02);
[H,pValue,Stat,CriticalValue]
ans =

0 0.0218 5.2624 5.4119

H = 0 indicates that there is enough statistical evidence in support of the
GARCH(2,1) model.

10-5



10 Model Selection and Analysis

Akaike and Bayesian Information Criteria
You can use Akaike (AIC) and Bayesian (BIC) information criteria to compare
alternative models. Information criteria penalize models with additional
parameters. Therefore, the AIC and BIC model order selection criteria are
based on parsimony (see Box, Jenkins, and Reinsel [10], pages 200-201).

The following example uses the default GARCH(1,1) and GARCH(2,1) models
developed in “Likelihood Ratio Tests” on page 10-3.

1 Count the estimated parameters.

Provide the number of parameters estimated in the model for both AIC and
BIC. For the relatively simple models used here, you can just count the
number of parameters. The GARCH(2,1) model estimated five parameters:

• C

• κ

• G1

• G2

• A1
The GARCH(1,1) model estimated four parameters:

• C

• κ

• G1

• A1

10-6



Akaike and Bayesian Information Criteria

Tip To count the estimated parameters in more elaborate models, use
the function garchcount. garchcount accepts the output specification
structure created by garchfit, and returns the number of parameters in
the model defined in that structure.

n21 = garchcount(coeff21)
n21 =

5
n11 = garchcount(coeff11)
n11 =

4

2 Compute the AIC and BIC criteria.

a To see the results more precisely, set the numeric format to long:

format long

Tip You can also set the numeric format by selecting
File > Preferences > Command Window > Text display from the
MATLAB® toolbar.

b Use the aicbic function to compute the AIC and BIC statistics for the
GARCH(2,1) model and the GARCH(1,1) model, and specify the number
of observations in the return series:

[AIC,BIC] = aicbic(LLF21,n21,1974);
[AIC BIC]
ans =

1.0e+004 * -1.59632585502853 -1.59353194641854
[AIC,BIC] = aicbic(LLF11,n11,1974);
[AIC BIC]
ans =

1.0e+004 * -1.59599961321328 -1.59376448632528

10-7



10 Model Selection and Analysis

You can use the relative values of the AIC and BIC statistics as guides in
the model selection process. In this example, the AIC criterion favors
the GARCH(2,1) model, while the BIC criterion favors the GARCH(1,1)
default model with fewer parameters. BIC imposes a greater penalty for
additional parameters than does AIC. Thus, BIC always provides a given
model with a number of parameters no greater than that chosen by AIC.

10-8



Equality Constraints and Parameter Significance

Equality Constraints and Parameter Significance

In this section...

“Specification Structure Fix Fields” on page 10-9

“Comparing the GARCH (1, 1) Estimation Results with the GARCH (2,1)
Model Fit to the NASDAQ Returns” on page 10-11

Specification Structure Fix Fields
Each of these coefficient fields in the specification structure:

• C

• AR

• MA

• Regress

• K

• GARCH

• ARCH

• Leverage

• DoF

has a corresponding logical field that lets you hold any individual parameter
fixed. These fix fields are:

• FixC

• FixAR

• FixMA

• FixRegress

• FixK

• FixGARCH

• FixARCH

10-9



10 Model Selection and Analysis

• FixLeverage

• FixDoF

This example fits the nasdaq return series to the default GARCH(1,1) model.

1 If the nasdaq data is not already in your workspace, restore it:

load garchdata
nasdaq = price2ret(NASDAQ);
spec11 = garchset('P',1,'Q',1,'Display','off');
[coeff11,errors11,LLF11] = garchfit(spec11,nasdaq);
garchdisp(coeff11,errors11)

Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 4

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C 0.00085852 0.00018353 4.6778
K 2.2595e-006 3.3806e-007 6.6836

GARCH(1) 0.87513 0.0089892 97.3531
ARCH(1) 0.11635 0.0085331 13.6348

2 Since the estimated model has no equality constraints, all the fixed fields
are implicitly empty; for example:

garchget(coeff11,'FixGARCH')
ans =

[]

When not empty ([]), each fix field is the same size as the corresponding
coefficient field.

A 0 in a particular element of a fix field indicates that the corresponding
value in its companion field is an initial parameter guess. garchfit refines
this guess during the estimation process.

10-10



Equality Constraints and Parameter Significance

A 1 in a particular element of a fix field indicates that garchfit holds the
corresponding element of its value field fixed during the estimation process
(that is, an equality constraint).

Note To remove the constant C from the conditional mean model, that is, to
fix C = 0 without providing initial parameter estimates for the remaining
parameters, set C = NaN (Not-a-Number). In this case, the value of FixC
has no effect.

Comparing the GARCH (1, 1) Estimation Results with
the GARCH (2,1) Model Fit to the NASDAQ Returns
This example compares the estimation results for the default GARCH(1,1)
model with those obtained from fitting a GARCH(2,1) model to the NASDAQ
returns. (See “Example Financial Time-Series Data Sets” on page 1-12.)

1 Restore your workspace as needed:

load garchdata
nasdaq = price2ret(NASDAQ);

2 Estimate the model parameters and display the results:

spec21 = garchset('P',2,'Q',1,'Display','off');
[coeff21,errors21,LLF21] = garchfit(spec21,nasdaq);
garchdisp(coeff21,errors21)

Mean: ARMAX(0,0,0); Variance: GARCH(2,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 5

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C 0.00086237 0.00018378 4.6925
K 2.3016e-006 4.7519e-007 4.8436

GARCH(1) 0.83571 0.18533 4.5092
GARCH(2) 0.036149 0.16562 0.2183

10-11



10 Model Selection and Analysis

ARCH(1) 0.1195 0.020346 5.8734

The T Statistic column is the parameter value divided by the standard
error, and is normally distributed for large samples. T-statistic
measures the number of standard deviations the parameter estimate is
away from zero. As a general rule, a T-statistic greater than 2 in
magnitude corresponds to approximately a 95 percent confidence interval.
The T-statistics shown here imply that the GARCH(2) parameter adds little
if any explanatory power to the model.

3 Assess significance of the GARCH(2) parameter.

a Constrain the GARCH(2) parameter at 0:

specG2 = garchset(coeff21,'GARCH',[0.8 0],'FixGARCH',[0 1]);

Using the specG2 structure, garchfit holds GARCH(2) fixed at 0, and
refines GARCH(1) from an initial value of 0.8 during the estimation
process. In other words, the specG2 specification structure tests the
composite model

y Ct t= + ε

σ κ σ σ εt t t tG G A2
1 1

2
2 2

2
1 1

2= + + +− − −

σ κ σ σ εt t t tG A2
1 1

2
2

2
1 1

20= + + +− − −

which is mathematically equivalent to the default GARCH(1,1) model.

b Estimate the model subject to the equality constraint, and display the
results:

[coeffG2,errorsG2,LLFG2] = garchfit(specG2,nasdaq);
garchdisp(coeffG2,errorsG2)

Mean: ARMAX(0,0,0); Variance: GARCH(2,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 4

10-12



Equality Constraints and Parameter Significance

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C 0.00085827 0.00018353 4.6766
K 2.2574e-006 3.3785e-007 6.6818

GARCH(1) 0.87518 0.0089856 97.3979
GARCH(2) 0 Fixed Fixed
ARCH(1) 0.11631 0.0085298 13.6357

The Standard Error and T-statistic columns for the second GARCH
parameter indicate that garchfit holds the GARCH(2) parameter
fixed. The number of estimated parameters also decreased from 5 in
the original, unrestricted GARCH(2,1) model to 4 in this restricted
GARCH(2,1) model. The results are virtually identical to those obtained
from the GARCH(1,1) model.

c Apply the likelihood ratio test:

[H,pValue,Stat,CriticalValue] = lratiotest(LLF21,LLFG2,...
1,0.05);

[H pValue Stat CriticalValue]
ans =

0 0.7835 0.0755 3.8415

This is the expected result. Because the two models are virtually
identical, the results support acceptance of the simpler restricted model.
This is essentially just the default GARCH(1,1) model.

10-13



10 Model Selection and Analysis

Equality Constraints and Initial Parameter Estimates

In this section...

“About this Example” on page 10-14

“Complete Model Specification” on page 10-14

“Empty Fix Fields” on page 10-15

“Limiting Use of Equality Constraints” on page 10-16

About this Example
This example highlights important points regarding equality constraints and
initial parameter estimates in the GARCH Toolbox™ software.

For information about using the specification structure fix fields to set
equality constraints, see “Specification Structure Fix Fields” on page 10-9.

Complete Model Specification
To set equality constraints during estimation, you must provide a complete
model specification, that is, the specification must include initial parameter
estimates consistent with the model orders. The only flexibility in this regard
is that you can specify the model for either the conditional mean or the
conditional variance, without specifying the other.

The following example attempts to set equality constraints for an incomplete
conditional mean model and a complete variance model. Create an
ARMA(1,1)/GARCH(1,1) specification structure for conditional mean and
variance models, respectively.

spec = garchset('R',1,'M',1,'C',0,'AR',0.5,'FixAR',1,...
'P',1,'Q',1,'K',0.0005,'GARCH',0.8,...
'ARCH',0.1,'FixGARCH',1)

spec =

Comment: 'Mean: ARMAX(1,1,?); Variance: GARCH(1,1)'
Distribution: 'Gaussian'

R: 1
M: 1

10-14



Equality Constraints and Initial Parameter Estimates

C: 0
AR: 0.5000
MA: []

VarianceModel: 'GARCH'
P: 1
Q: 1
K: 5.0000e-004

GARCH: 0.8000
ARCH: 0.1000

FixAR: 1
FixGARCH: 1

The conditional mean model is incomplete because the MA field is still empty.
Since the requested ARMA(1,1) model is an incomplete conditional mean
specification, garchfit does the following:

• Ignores the C, AR, and FixAR fields.

• Computes initial parameter estimates.

• Overwrites existing parameters in the incomplete conditional mean
specification.

• Estimates all conditional mean parameters (that is, C, AR, and MA).

• Ignores the request to constrain the AR parameter.

However, since the structure explicitly sets all fields in the conditional
variance model, garchfit uses the specified values of K and ARCH as initial
estimates subject to further refinement, and holds the GARCH parameter at 0.8
throughout the optimization process.

Empty Fix Fields
Any empty fix field, ([]), is equivalent to a vector of zeros of compatible length.
When garchfit encounters an empty fix field, it automatically estimates the
corresponding parameter. For example, the following specification structures
produce the same GARCH(1,1) estimation results.

spec1 = garchset('K',0.005,'GARCH',0.8,'ARCH',0.1,...
'FixGARCH',0,'FixARCH',0)

10-15



10 Model Selection and Analysis

spec2 = garchset('K',0.005,'GARCH',0.8,'ARCH',0.1)

Note To remove the constant C from the conditional mean model, use
garchset to set C to NaN. This fixes C = 0 without providing initial parameter
estimates for the remaining parameters. In this case, the value of FixC is
ignored.

Limiting Use of Equality Constraints
Although the ability to set equality constraints is useful, equality constraints
complicate the estimation process. For this reason, you should avoid setting
several equality constraints simultaneously. For example, to really estimate a
GARCH(1,1) model, specify a GARCH(1,1) model instead of a more elaborate
model with numerous constraints.

10-16



Examples: Simplicity and Parsimony

Examples: Simplicity and Parsimony
As a general rule, you should specify the smallest, simplest models that
adequately describe your data. This is especially relevant for estimation.
Simple models are easier to estimate, easier to forecast, and easier to analyze.
In fact, certain model selection criteria, such as AIC and BIC discussed in
the section Chapter 10, “Model Selection and Analysis”, penalize models for
their complexity.

Diagnostic tools such as the autocorrelation function (ACF) and partial
autocorrelation function (PACF), are recommended for guiding model
selection. For example, the section “Example: Analysis and Estimation
Using the Default Model” on page 2-16 examines the ACF and PACF of the
Deutschmark/British Pound foreign-exchange rate (see “Example Financial
Time-Series Data Sets” on page 1-12). The results support the use of a simple
constant for the conditional mean model as adequate to describe the data.

The following example illustrates a complicated model specification. It
simulates a return series as a pure GARCH(1,1) innovations process (that is,
the default model). It then attempts to overfit an ARMA(1,1)/GARCH(1,1)
composite model to the data.

1 Create a specification structure for the innovations process and simulate
the returns:

spec = garchset('C',0,'K',0.00005,'GARCH',0.85,'ARCH',0.1,...
'Display','off');

randn('state',0);
rand('twister',0);
[e,s,y] = garchsim(spec,5000,1);

2 Fit the default model to the known GARCH(1,1) innovations process and
display the estimation results:

[coeff,errors] = garchfit(spec,y);
garchdisp(coeff,errors)

Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian

10-17



10 Model Selection and Analysis

Number of Model Parameters Estimated: 4

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C -5.8129e-005 0.0004096 -0.1419
K 4.6408e-005 8.3396e-006 5.5648

GARCH(1) 0.85994 0.014612 58.8515
ARCH(1) 0.095354 0.0097535 9.7765

These estimation results indicate that the model that best fits the observed
data is approximately

y et t= − +−5 8129 005. ε

σ σ εt t te2 005
1

2
1

24 6408 0 85994 0 95354= + +−
− −. . .

3 Continue by fitting the known GARCH(1,1) innovations process to an
ARMA(1,1) mean model, and display the estimation results:

spec11 = garchset(spec,'R',1,'M',1);
[coeff11,errors11] = garchfit(spec11,y);
garchdisp(coeff11,errors11)

Mean: ARMAX(1,1,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 6

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C -7.1366e-005 0.00052468 -0.1360

AR(1) -0.24509 0.32706 -0.7494
MA(1) 0.28515 0.32362 0.8811

K 4.6868e-005 8.4098e-006 5.5731
GARCH(1) 0.85917 0.014733 58.3160
ARCH(1) 0.095584 0.0097975 9.7560

10-18



Examples: Simplicity and Parsimony

4 Examine the results. Close examination of the conditional mean equation
reveals that the AR(1) and MA(1) parameters are similar. In fact, when
rewriting the mean equation in backshift (that is, lag) operator notation,

where By yt t= −1 ,

( . ) . ( . )1 0 24509 7 1366 1 0 28515005+ = − + +−B y e Bt tε

the autoregressive and moving-average polynomials come close to canceling
each other (see Box, Jenkins, and Reinsel [10], pages 263-267). This is an
example of parameter redundancy, or pole-zero cancellation. This supports
the use of the simple default model. In fact, the more elaborate ARMA(1,1)
model only complicates the analysis by requiring the estimation of two
additional parameters.

10-19



10 Model Selection and Analysis

10-20



11

Example Workflow:
Estimation, Forecasting,
and Simulation

Estimating the Model (p. 11-3) Fits ARMA(1,1) and GJR(1,1) models
to the conditional mean and variance
processes, respectively, of the
NASDAQ return series, assuming
conditionally t-distributed residuals

Forecasting (p. 11-5) Uses the estimated model from the
first part of the example to forecast
the conditional standard deviations
of residuals, the returns, the
standard deviations of multi-period
cumulative returns, and the
standard errors of the forecast of
returns over multiple periods



11 Example Workflow: Estimation, Forecasting, and Simulation

Forecasting Using Monte Carlo
Simulation (p. 11-7)

Uses the estimated model from
the first part of the example and
vector-format presample data to
perform dependent-path Monte
Carlo simulation of multiple
realizations

Comparing Forecasts with
Simulation Results (p. 11-9)

Illustrates the relationship between
forecasting and dependent-path
Monte Carlo simulation by
comparing and contrasting the
forecasts with their counterparts
derived from the Monte Carlo
simulation

11-2



Estimating the Model

Estimating the Model
The first part of the example fits the NASDAQ daily returns to an
ARMA(1,1)/GJR(1,1) model with conditionally t-distributed residuals. (See
“Example Financial Time-Series Data Sets” on page 1-12 for more information
about the NASDAQ Composite Index data set.)

1 Load the nasdaq data set and convert daily closing prices to daily returns:

load garchdata
nasdaq = price2ret(NASDAQ);

2 Create a specification structure for an ARMA(1,1)/GJR(1,1) model with
conditionally t-distributed residuals:

spec = garchset('VarianceModel','GJR',...
'R',1,'M',1,'P',1,'Q',1);

spec = garchset(spec,'Display','off','Distribution','T');

Note This example is for illustration purposes only. Such an elaborate
ARMA(1,1) model is typically not needed, and should only be used after you
have performed a sound pre-estimation analysis.

3 Estimate the parameters of the mean and conditional variance models via
garchfit. Make sure that the example returns the estimated residuals
and conditional standard deviations inferred from the optimization process,
so that they can be used as presample data:

[coeff,errors,LLF,eFit,sFit] = garchfit(spec,nasdaq);

Alternatively, you could replace this call to garchfit with the following
successive calls to garchfit and garchinfer. This is because the estimated
residuals and conditional standard deviations are also available from the
inference function garchinfer:

[coeff,errors] = garchfit(spec,nasdaq);
[eFit,sFit] = garchinfer(coeff,nasdaq);

11-3



11 Example Workflow: Estimation, Forecasting, and Simulation

Either approach produces the same estimation results:

garchdisp(coeff,errors)

Mean: ARMAX(1,1,0); Variance: GJR(1,1)

Conditional Probability Distribution: T
Number of Model Parameters Estimated: 8

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C 0.00099709 0.00023381 4.2646

AR(1) -0.10719 0.11571 -0.9264
MA(1) 0.26272 0.11208 2.3441

K 1.4684e-006 3.8716e-007 3.7927
GARCH(1) 0.89993 0.011223 80.1855
ARCH(1) 0.048844 0.013619 3.5863

Leverage(1) 0.086624 0.016922 5.1189
DoF 7.8274 0.9301 8.4157

11-4



Forecasting

Forecasting
The second part of the example uses the model from “Estimating the Model”
on page 11-3 to compute forecasts for the nasdaq return series 30 days into
the future.

1 Set the forecast horizon to 30 days (one month):

horizon = 30; % Define the forecast horizon

2 Call the forecasting engine, garchpred, with the estimated model
parameters, coeff, the nasdaq returns, and the forecast horizon:

[sigmaForecast,meanForecast,sigmaTotal,meanRMSE] = ...
garchpred(coeff,nasdaq,horizon);

This call to garchpred returns the following parameters:

• Forecasts of conditional standard deviations of the residuals
(sigmaForecast)

• Forecasts of the nasdaq returns (meanForecast)

• Forecasts of the standard deviations of the cumulative holding period
nasdaq returns (sigmaTotal)

• Standard errors associated with forecasts of nasdaq returns (meanRMSE)

Because the return series nasdaq is a vector, all garchpred outputs are
vectors. Because garchpred uses iterated conditional expectations to
successively update forecasts, all garchpred outputs have 30 rows. The
first row stores the 1-period-ahead forecasts, the second row stores the
2-period-ahead forecasts, and so on. Thus, the last row stores the forecasts
at the 30-day horizon.

11-5



11 Example Workflow: Estimation, Forecasting, and Simulation

11-6



Forecasting Using Monte Carlo Simulation

Forecasting Using Monte Carlo Simulation
The third part of the example uses the same estimated model, coeff, as
in “Forecasting” on page 11-5. This part of the example simulates 20000
realizations for the same 30-day period.

The example explicitly specifies the needed presample data:

• It uses the inferred residuals (eFit) and standard deviations (sFit)
from “Estimating the Model” on page 11-3 as the presample inputs
PreInnovations and PreSigmas, respectively.

• It uses the nasdaq return series as the presample input PreSeries.

Because all inputs are vectors, garchsim applies the same vector to each
column of the corresponding outputs, Innovations, Sigmas, and Series. In
this context, called dependent-path simulation, all simulated sample paths
share a common conditioning set and evolve from the same set of initial
conditions. This enables Monte Carlo simulation of forecasts and forecast
error distributions.

Specify PreInnovations, PreSigmas, and PreSeries as matrices, where each
column is a realization, or as single-column vectors. In either case, they must
have a sufficient number of rows to initiate the simulation (see “Running
Simulations With User-Specified Presample Data” on page 4-13).

For this application of Monte Carlo simulation, the example generates a
relatively large number of realizations, or sample paths, so that it can
aggregate across realizations. Because each realization corresponds to a
column in the garchsim time-series output arrays, the output arrays are
large, with many columns.

1 Simulate 20000 paths (columns):

nPaths = 20000; % Define the number of realizations.
randn('state',0);
rand('twister',0);
[eSim,sSim,ySim] = garchsim(coeff,horizon,nPaths,...
[],[],[], eFit,sFit,nasdaq);

11-7



11 Example Workflow: Estimation, Forecasting, and Simulation

Each time-series output that garchsim returns is an array of size
horizon-by-nPaths, or 30-by-20000. Although more realizations (for
example, 100000) provide more accurate simulation results, you may want
to decrease the number of paths (for example, to 10000) to avoid memory
limitations.

2 Because garchsim needs only the last, or most recent, observation of each,
the following command produces identical results:

randn('state',0);
rand('twister',0);
[eSim,sSim,ySim] = garchsim(coeff,horizon,nPaths, ...

[],[],[], eFit(end),sFit(end),nasdaq(end));

11-8



Comparing Forecasts with Simulation Results

Comparing Forecasts with Simulation Results
The fourth part of this example graphically compares the forecasts from
“Forecasting” on page 11-5 with their counterparts derived from “Forecasting
Using Monte Carlo Simulation” on page 11-7. The first four figures compare
directly each of the garchpred outputs, in turn, with the corresponding
statistical result obtained from simulation. The last two figures illustrate
histograms from which you can compute approximate probability density
functions and empirical confidence bounds.

Note For an EGARCH model, multi-period MMSE forecasts are generally
downward-biased and underestimate their true expected values for
conditional variance forecasts. This is not true for one-period-ahead forecasts,
which are unbiased in all cases. For unbiased multi-period forecasts of
sigmaForecast, sigmaTotal, and meanRMSE, you can perform Monte Carlo
simulation using garchsim. For more information, see “Asymptotic Behavior
for Long-Range Forecast Horizons” on page 7-7.

1 Compare the first garchpred output, sigmaForecast (the conditional
standard deviations of future innovations), with its counterpart derived
from the Monte Carlo simulation:

figure
plot(sigmaForecast,'.-b')
hold('on')
grid('on')
plot(sqrt(mean(sSim.^2,2)),'.r')
title('Forecast of STD of Residuals')
legend('forecast results','simulation results')
xlabel('Forecast Period')
ylabel('Standard Deviation')

11-9



11 Example Workflow: Estimation, Forecasting, and Simulation

2 Compare the second garchpred output, meanForecast(the MMSE forecasts
of the conditional mean of the nasdaq return series), with its counterpart
derived from the Monte Carlo simulation:

figure(2)
plot(meanForecast,'.-b')
hold('on')
grid('on')
plot(mean(ySim,2),'.r')
title('Forecast of Returns')
legend('forecast results','simulation results',4)
xlabel('Forecast Period')
ylabel('Return')

11-10



Comparing Forecasts with Simulation Results

3 Compare the third garchpred output, sigmaTotal, that is, cumulative
holding period returns, with its counterpart derived from the Monte Carlo
simulation:

holdingPeriodReturns = log(ret2price(ySim,1));
figure(3)
plot(sigmaTotal,'.-b')
hold('on')
grid('on')
plot(std(holdingPeriodReturns(2:end,:)'),'.r')
title('Forecast of STD of Cumulative Holding Period Returns')
legend('forecast results','simulation results',4)
xlabel('Forecast Period')
ylabel('Standard Deviation')

11-11



11 Example Workflow: Estimation, Forecasting, and Simulation

4 Compare the fourth garchpred output, meanRMSE, that is the root mean
square errors (RMSE) of the forecasted returns, with its counterpart
derived from the Monte Carlo simulation:

figure(4)
plot(meanRMSE,'.-b')
hold('on')
grid('on')
plot(std(ySim'),'.r')
title('Standard Error of Forecast of Returns')
legend('forecast results','simulation results')
xlabel('Forecast Period')
ylabel('Standard Deviation')

11-12



Comparing Forecasts with Simulation Results

5 Use a histogram to illustrate the distribution of the cumulative holding
period return obtained if an asset was held for the full 30-day forecast
horizon. That is, plot the return obtained by purchasing a mutual fund
that mirrors the performance of the NASDAQ Composite Index today, and
sold after 30 days. This histogram is directly related to the final red dot
in step 3:

figure(5)
hist(holdingPeriodReturns(end,:),30)
grid('on')
title('Cumulative Holding Period Returns at Forecast Horizon')
xlabel('Return')
ylabel('Count')

11-13



11 Example Workflow: Estimation, Forecasting, and Simulation

6 Use a histogram to illustrate the distribution of the single-period return
at the forecast horizon, that is, the return of the same mutual fund, the
30th day from now. This histogram is directly related to the final red dots
in steps 2 and 4:

figure(6)
hist(ySim(end,:),30)
grid('on')
title('Simulated Returns at Forecast Horizon')
xlabel('Return')
ylabel('Count')

11-14



Comparing Forecasts with Simulation Results

Note Detailed analyses of such elaborate conditional mean and variance
models are not usually required to describe typical financial time series.
Furthermore, such a graphical analysis may not necessarily make sense
for a given model. This example is intended to highlight the range of
possibilities and provide a deeper understanding of the interaction between
the simulation, forecasting, and estimation engines. For more information,
see garchsim, garchpred, and garchfit.

11-15



11 Example Workflow: Estimation, Forecasting, and Simulation

11-16



12

Function Reference

Data Preprocessing (p. 12-2) Filters, smoothers, and
transformations

GARCH Specification Structure
(p. 12-2)

Manipulate GARCH specification
structures

GARCH Modeling (p. 12-3) Model estimation, forecasting, and
Monte Carlo simulation

General Utilities (p. 12-3) Utilities for general GARCH
modeling tasks

Graphics (p. 12-4) Time series visualization

Statistics and Tests (p. 12-4) Compute statistics and perform tests



12 Function Reference

Data Preprocessing
hpfilter Run Hodrick-Prescott filter

GARCH Specification Structure
garchget Get value of GARCH specification

structure parameter

garchset Create or modify GARCH
specification structure

12-2



GARCH Modeling

GARCH Modeling
garchfit Estimate univariate GARCH process

parameters

garchpred Perform univariate GARCH process
forecasting

garchsim Perform univariate GARCH process
simulation

General Utilities
garchar Convert finite-order ARMA models

to infinite-order autoregressive (AR)
models

garchcount Count number of GARCH estimation
coefficients

garchdisp Display GARCH process estimation
results

garchinfer Infer GARCH innovation processes
from return series

garchma Convert finite-order ARMA models
to infinite-order moving average
(MA) models

lagmatrix Create lagged time-series matrix

price2ret Convert price series to return series

ret2price Convert return series to price series

12-3



12 Function Reference

Graphics
garchplot Plot matched univariate innovations,

volatility, and return series

Statistics and Tests
aicbic Calculate Akaike (AIC) and Bayesian

(BIC) information criteria for model
order selection

archtest Run Engle’s hypothesis test to detect
presence of ARCH/GARCH effects

autocorr Plot or return computed sample
autocorrelation function

crosscorr Plot or return computed sample
cross-correlation function

dfARDTest Run augmented Dickey-Fuller unit
root test based on AR model with
drift

dfARTest Run augmented Dickey-Fuller unit
root test based on zero drift AR
model

dfTSTest Run augmented Dickey-Fuller unit
root test based on trend stationary
AR model

lbqtest Run Ljung-Box Q-statistic lack-of-fit
hypothesis test

lratiotest Run Likelihood ratio hypothesis test

parcorr Plot or return computed sample
partial autocorrelation function

ppARDTest Run Phillips-Perron unit root test
based on AR(1) model with drift

12-4



Statistics and Tests

ppARTest Run Phillips-Perron unit root test
based on zero drift AR(1) model

ppTSTest Run Phillips-Perron unit root test
based on trend stationary AR(1)
model

12-5



12 Function Reference

12-6



13

Functions — Alphabetical
List



aicbic

Purpose Calculate Akaike (AIC) and Bayesian (BIC) information criteria for
model order selection

Syntax AIC = aicbic(LLF,NumParams)
[AIC,BIC] = aicbic(LLF,NumParams,NumObs)

Description • aicbic computes the Akaike and Bayesian information criteria,
using optimized log-likelihood objective function (LLF) values as
input. You can obtain the LLF values by fitting models of the
conditional mean and variance to a univariate return series.

• AIC = aicbic(LLF,NumParams) computes only the Akaike (AIC)
information criteria.

• [AIC,BIC] = aicbic(LLF,NumParams,NumObs) computes both the
Akaike (AIC) and Bayesian (BIC) information criteria.

Since information criteria penalize models with additional parameters,
parsimony is the basis of the AIC and BIC model order selection criteria.

Input
Arguments

LLF Vector of optimized log-likelihood objective function
(LLF) values associated with parameter estimates of
the models to be tested. aicbic assumes that you
obtained the LLF values from the estimation function
garchfit or the inference function garchinfer.

NumParams Number of estimated parameters associated with each
LLF value in LLF. NumParams can be a scalar applied to
all values in LLF, or a vector the same length as LLF.
All elements of NumParams must be positive integers.
Use garchcount to compute NumParams values.

NumObs Sample size of the observed return series you associate
with each value of LLF. NumObs can be a scalar applied
to all values in LLF, or a vector the same length as LLF.

13-2



aicbic

It is required to compute BIC. All elements of NumObs
must be positive integers.

Output
Arguments

AIC Vector of AIC statistics associated with each LLF
objective function value. The AIC statistic is defined as

AIC = (-2*LLF) + (2*NumParams)

BIC Vector of BIC statistics associated with each LLF
objective function value. The BIC statistic is defined as

BIC = = (-2*LLF) + (NumParams * log(NumObs))

Examples See “Akaike and Bayesian Information Criteria” on page 10-6.

See Also garchdisp, garchfit, garchinfer

References Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

13-3



archtest

Purpose Run Engle’s hypothesis test to detect presence of ARCH/GARCH effects

Syntax [H,pValue,ARCHstat,CriticalValue] = archtest(Residuals,Lags,
Alpha)

Description [H,pValue,ARCHstat,CriticalValue] =
archtest(Residuals,Lags,Alpha) tests the null hypothesis that a
time series of sample residuals consists of independent identically
distributed (i.i.d.) Gaussian disturbances; that is, that no ARCH
effects exist.

Given sample residuals obtained from a curve fit (for example, a
regression model), archtest tests for the presence of Mth order ARCH
effects. It does so by regressing the squared residuals on a constant and
the lagged values of the previous M squared residuals.

Under the null hypothesis, the asymptotic test statistic, T(R2), where:

• T is the number of squared residuals included in the regression.

• R2 is the sample multiple correlation coefficient.

is asymptotically chi-square distributed with M degrees of freedom.

When testing for ARCH effects, a GARCH(P,Q) process is locally
equivalent to an ARCH(P+Q) process.

Input
Arguments

Residuals Time-series column vector of sample residuals obtained
from a curve fit, which archtest examines for the
presence of ARCH effects. The last row contains the
most recent observation.

Lags Vector of positive integers indicating the lags of the
squared sample residuals included in the ARCH test
statistic. If specified, each lag should be less than the

13-4



archtest

length of Residuals. If Lags = [] or is unspecified,
the default is 1 lag (that is, first-order ARCH).

Alpha Significance levels of the hypothesis test. Alpha can
be a scalar applied to all lags in Lags, or a vector of
significance levels the same length as Lags. If Alpha
= [] or is unspecified, the default is 0.05. For all
elements, α of Alpha, 0 < α < 1.

Output
Arguments

H Boolean decision vector. 0 indicates acceptance
of the null hypothesis that no ARCH effects
exist; that is, there is homoscedasticity at the
corresponding element of Lags. 1 indicates
rejection of the null hypothesis. The length of H is
the same as the length of Lags.

pValue Vector of p-values (significance levels) at which
archtest rejects the null hypothesis of no ARCH
effects at each lag in Lags.

ARCHstat Vector of ARCH test statistics for each lag in
Lags.

CriticalValue Vector of critical values of the chi-square
distribution for comparison with the
corresponding element of ARCHstat.

Examples Example 1

Create a time-series column vector of 100 (synthetic) residuals, then
test for the first, second, and fourth order ARCH effects at the 10
percent significance level:

randn('state', 0) % Start from a known state.

residuals = randn(100, 1); % 100 Gaussian deviates ~ N(0, 1)

13-5



archtest

[H, P, Stat, CV] = archtest(residuals, [1 2 4]', 0.10);

[H, P, Stat, CV]

ans =

0 0.3925 0.7312 2.7055

0 0.5061 1.3621 4.6052

0 0.7895 1.7065 7.7794

Example 2

See “Example: Analysis and Estimation Using the Default Model” on
page 2-16 for another example.

See Also lbqtest

References Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

Engle, Robert, “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica,
Vol. 50, 1982, pp. 987-1007.

Gourieroux, C., ARCH Models and Financial Applications,
Springer-Verlag, 1997.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

13-6



autocorr

Purpose Plot or return computed sample autocorrelation function

Syntax autocorr(Series,nLags,M,nSTDs)
[ACF,Lags,Bounds] = autocorr(Series,nLags,M,nSTDs)

Description • autocorr(Series,nLags,M,nSTDs) computes and plots the sample
ACF of a univariate, stochastic time series with confidence bounds. To
plot the ACF sequence without the confidence bounds, set nSTDs = 0.

• [ACF,Lags,Bounds] = autocorr(Series,nLags,M,nSTDs)
computes and returns the ACF sequence.

Input
Arguments

Series Column vector of observations of a univariate time
series for which autocorr computes or plots the sample
autocorrelation function (ACF). The last row of Series
contains the most recent observation of the time series.

nLags Positive scalar integer indicating the number of lags of
the ACF to compute. If nLags = [] or is unspecified, the
default is to compute the ACF at lags 0, 1, 2, ..., T, where
T = min([20,length(Series)-1]).

M Nonnegative integer scalar indicating the number of
lags beyond which the theoretical ACF is effectively 0.
autocorr assumes the underlying Series is an MA(M)
process, and uses Bartlett’s approximation to compute the
large-lag standard error for lags greater than M. If M = []
or is unspecified, the default is 0, and autocorr assumes
that Series is Gaussian white noise. If Series is a
Gaussian white noise process of length N, the standard

error is approximately

1
N . M must be less than nLags.

nSTDs Positive scalar indicating the number of standard
deviations of the sample ACF estimation error to
compute. autocorr assumes the theoretical ACF of

13-7



autocorr

Series is 0 beyond lag M. When M = 0 and Series is
a Gaussian white noise process of length N, specifying

nSTDs results in confidence bounds at
±( )

nSTDs
N . If

nSTDs = [] or is unspecified, the default is 2 (that is,
approximate 95 percent confidence interval).

Output
Arguments

ACF Sample autocorrelation function of Series. ACF is a
vector of length nLags+1 corresponding to lags 0, 1, 2, ...,
nLags. The first element of ACF is unity, that is, ACF(1) =
1 = lag 0 correlation.

Lags Vector of lags corresponding to ACF(0,1,2,...,nLags).
Since an ACF is symmetric about 0 lag, autocorr ignores
negative lags.

Bounds Two-element vector indicating the approximate upper
and lower confidence bounds, assuming that Series is
an MA(M) process. Values of ACF beyond lag M that are
effectively 0 lie within these bounds. autocorr computes
Bounds only for lags greater than M.

Examples Example 1

Create an MA(2) time series from a column vector of 1000 Gaussian
deviates. Then, assess whether the ACF is effectively zero for lags
greater than 2:

randn('state', 0) % Start from a known state.

x = randn(1000, 1); % 1000 Gaussian deviates ~ N(0, 1).

y = filter([1 -1 1], 1, x); % Create an MA(2) process.

13-8



autocorr

% Compute the ACF with 95 percent confidence.

[ACF, Lags, Bounds] = autocorr(y, [], 2);

[Lags, ACF]

ans =

0 1.0000

1.0000 -0.6487

2.0000 0.3001

3.0000 0.0229

4.0000 0.0196

5.0000 -0.0489

6.0000 0.0452

7.0000 0.0012

8.0000 -0.0214

9.0000 0.0235

10.0000 0.0340

11.0000 -0.0392

12.0000 0.0188

13.0000 0.0504

14.0000 -0.0600

15.0000 0.0251

16.0000 0.0441

17.0000 -0.0732

18.0000 0.0755

19.0000 -0.0571

20.0000 0.0485

Bounds

Bounds =

0.0899

-0.0899

autocorr(y, [], 2) % Use the same example, but plot the ACF

% sequence with confidence bounds.

13-9



autocorr

Example 2

Although various estimates of the sample autocorrelation function
exist, the form adopted here follows that of Box, Jenkins, and Reinsel,
specifically:

rk
c
c
k=
0 (13-1)

c
N

z z z z k Kk t
t

N k

t k= − − =
=

−
+∑1 0 1 2

1
( )( ) , , ,...( )           

(13-2)

The autocorr function computes the sample ACF by removing the
sample mean of the input Series, then normalizing the sequence such

13-10



autocorr

that the ACF at lag zero is unity. In certain applications, it is useful to
rescale the resulting normalized ACF by the sample variance. In this
case, the correct scale factor to use is var(Series,1).

The following commands simulate 1000 standard Gaussian random
numbers, then compares the first 10 lags of the sample ACF with and
without normalization:

randn('state', 0);
y = randn(1000, 1);
[ACF, Lags] = autocorr(y, 10);
[Lags ACF ACF*var(y,1)]
ans =

0 1.0000 0.8893
1.0000 0.0111 0.0099
2.0000 -0.0230 -0.0205
3.0000 0.0194 0.0173
4.0000 0.0068 0.0061
5.0000 -0.0371 -0.0330
6.0000 0.0241 0.0215
7.0000 0.0101 0.0090
8.0000 -0.0011 -0.0010
9.0000 0.0577 0.0513

10.0000 0.0526 0.0467

Example 3

See “Example: Analysis and Estimation Using the Default Model” on
page 2-16.

See Also crosscorr, parcorr

filter (MATLAB® function)

References Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

13-11



crosscorr

Purpose Plot or return computed sample cross-correlation function

Syntax crosscorr(Series1,Series2,nLags,nSTDs)
[XCF,Lags,Bounds] = crosscorr(Series1,Series2,nLags,nSTDs)

Description • crosscorr(Series1,Series2,nLags,nSTDs) computes and plots
the sample cross-correlation function (XCF) between two univariate,
stochastic time series. To plot the XCF sequence without the
confidence bounds, set nSTDs = 0.

• [XCF,Lags,Bounds] =
crosscorr(Series1,Series2,nLags,nSTDs) computes and
returns the XCF sequence.

Input
Arguments

Series1 Column vector of observations of the first univariate time
series for which crosscorr computes or plots the sample
cross-correlation function (XCF). The last row of Series1
contains the most recent observation.

Series2 Column vector of observations of the second univariate
time series for which crosscorr computes or plots the
sample XCF. The last row of Series2 contains the most
recent observation.

nLags Positive scalar integer indicating the number of lags of
the XCF to compute. If nLags = [] or is unspecified,

crosscorr computes the XCF at lags 0 1 2, , ,...,± ± ±T ,
where T = min([20,min([length(Series1),
length(Series2)])-1]).

nSTDs Positive scalar indicating the number of standard
deviations of the sample XCF estimation error to
compute, if Series1 and Series2 are uncorrelated. If
nSTDs = [] or is unspecified, the default is 2 (that is,
approximate 95 percent confidence interval).

13-12



crosscorr

Output
Arguments

XCF Sample cross-correlation function between Series1 and
Series2. XCF is a vector of length 2(nLags)+1, which

corresponds to lags 0 1 2, , ,...,± ± ±nLAGs . The center
element of XCF contains the 0th lag cross correlation.

Lags Vector of lags corresponding to XCF(nLags, ..., +nLags).

Bounds Two-element vector indicating the approximate upper
and lower confidence bounds, assuming that Series1 and
Series2 are completely uncorrelated.

Examples Example 1

1 Create a time-series column vector of 100 Gaussian deviates:

randn('state', 100) % Start from a known state
x = randn(100, 1); % 100 Gaussian deviates, N(0, 1)

2 Create a delayed version of the vector, lagged by four samples:

y = lagmatrix(x, 4); % Delay it by 4 samples

3 Compute the XCF, and then plot it to see the XCF peak at the fourth
lag:

y(isnan(y)) = 0;

[XCF, Lags, Bounds] = crosscorr(x, y);

[Lags, XCF]

ans =

-20.0000 -0.0210

-19.0000 -0.0041

-18.0000 0.0661

-17.0000 0.0668

-16.0000 0.0380

-15.0000 -0.1060

13-13



crosscorr

-14.0000 0.0235

-13.0000 0.0240

-12.0000 0.0366

-11.0000 0.0505

-10.0000 0.0661

-9.0000 0.1072

-8.0000 -0.0893

-7.0000 -0.0018

-6.0000 0.0730

-5.0000 0.0204

-4.0000 0.0352

-3.0000 0.0792

-2.0000 0.0550

-1.0000 0.0004

0 -0.1556

1.0000 -0.0959

2.0000 -0.0479

3.0000 0.0361

4.0000 0.9802

5.0000 0.0304

6.0000 -0.0566

7.0000 -0.0793

8.0000 -0.1557

9.0000 -0.0128

10.0000 0.0623

11.0000 0.0625

12.0000 0.0268

13.0000 0.0158

14.0000 0.0709

15.0000 0.0102

16.0000 -0.0769

17.0000 0.1410

18.0000 0.0714

19.0000 0.0272

20.0000 0.0473

Bounds

13-14



crosscorr

Bounds =

0.2000

-0.2000

crosscorr(x, y) % Use the same example, but plot the XCF

% sequence. Note the peak at the 4th lag.

Example 2

See “Example: Analysis and Estimation Using the Default Model” on
page 2-16.

See Also autocorr, parcorr

filter (MATLAB® function)

13-15



dfARDTest

Purpose Run augmented Dickey-Fuller unit root test based on AR model with
drift

Syntax [H,pValue,TestStat,CriticalValue] = ...
dfARDTest(Y,Lags,Alpha,TestType)

Description [H,pValue,TestStat,CriticalValue] = ...
dfARDTest(Y,Lags,Alpha,TestType) performs an augmented

Dickey-Fuller univariate unit root test. This test assumes that the true
underlying process is a zero drift unit root process. As an alternative,
OLS regression estimates a (P+1)th order autoregressive (AR(P+1))
model plus additive constant.

Specifically, if yt and ε t are the time series of observed data and

model residuals, respectively, and Δy y yt t t= − −1 is the first difference
operator, then under the null hypothesis the true underlying process is
a zero drift ARIMA(P,1,0) model:

Δ Δ Δ Δy y y y yt t t t p t p t= + + + +− − − −1 1 1 2 2ζ ζ ζ ε...

This is equivalent to an integrated AR(P+1) model.

As an alternative, the estimated OLS regression model is

Δ Δ Δ Δy C y y y yt t t t p t p t= + + + + +− − − −φ ζ ζ ζ ε1 1 1 2 2 ...

for some constant C and AR(1) coefficient φ < 1.

13-16



dfARDTest

Input
Arguments

Y Time-series vector of observed data tested for a unit
root. The last element contains the most recent
observation. dfARDTest represents missing values as
NaNs and removes them, thereby reducing the sample
size.

Lags (Optional) Scalar or vector of nonnegative integers.
This parameter indicates the number of lagged changes
(that is, first differences) of Y included in the OLS
regression model. Lags serves as a correction for serial
correlation of residuals. If Lags is empty or missing, the
default is 0 (no correction for serial correlation).

Alpha (Optional) Scalar or vector of significance levels of
the test. All elements of the input argument must be
0.001 ≤ Alpha ≤ 0.999.

TestType (Optional) Character string indicating the type of unit
root test. Possible choices are:

• t, indicating an OLS t test of the AR(1) coefficient

• AR, indicating a test of the unstudentized AR(1)
coefficient

• F, indicating a joint OLS F test of a unit root (Φ =
1) with zero drift (C = 0)

dfARDTest performs a case-insensitive check of
TestType. If it is empty or missing, the default is a
t test.

13-17



dfARDTest

Output
Arguments

H Logical decision vector. Elements of H = 0
indicate acceptance of the null hypothesis;
elements of H = 1 indicate rejection of the null
hypothesis. Each element of H is associated with
a particular lag of Lags and significance level of
Alpha.

pValue Vector of p-values (significance levels) associated
with the test decision vector H. Each element of
pValue represents the probability of observing
a test statistic at least as extreme as that
calculated from the OLS regression model when
the null hypothesis is true. dfARDTest obtains
p-values by interpolation into the appropriate
table of critical values.

When a p-value is outside of the range of
tabulated significance levels (that is 0.001 <=
Alpha <=0.999), a warning appears. dfARDTest
then sets pValue to the appropriate limit (pValue
= 0.001 or 0.999).

TestStat Vector of test statistics associated with the
decision vector H.

CriticalValue Vector of critical values associated with the
decision vector H.

Notes You can specify both Lags and Alpha as scalars or vectors. If you specify
both as vectors, they must be the same length (that is, they must have
the same number of elements). If you specify one of these parameters
as a scalar and the other as a vector, dfARDTest performs a scalar
expansion to enforce vectors of identical length. If Lags is a scalar or an
empty matrix, by default, all outputs are column vectors.

13-18



dfARDTest

All vector outputs are the same length as vector inputs Alpha and/or
Lags. By default, all vector outputs are column vectors. If Lags is a row
vector, however, all vector outputs are row vectors.

This univariate unit root test is a conventional single-tailed test.
dfARDTest compares the test statistic with the critical value to
determine whether the test is accepted or rejected:

• The AR and t tests are lower-tailed tests. Reject the null hypothesis if
the test statistic is less than the critical value.

• The joint F test is an upper-tailed test. Reject the null hypothesis if
the test statistic is greater than the critical value.

See Also dfARTest, dfTSTest, ppARDTest, ppARTest, ppTSTest

References Hamilton, J.D., Time Series Analysis, Princeton University Press,
Princeton, NJ, 1994.

Greene, W.H., Econometric Analysis, Prentice Hall, Fifth edition, Upper
Saddle River, NJ, 2003.

Enders, W., Applied Econometric Time Series, John Wiley & Sons, New
York, 1995.

Campbell, J.Y., A.W. Lo, and A.C. MacKinlay, The GARCH of Financial
Markets, Princeton University Press, Princeton, NJ, 1997.

13-19



dfARTest

Purpose Run augmented Dickey-Fuller unit root test based on zero drift AR
model

Syntax [H,pValue,TestStat,CriticalValue] = dfARTest(Y,Lags,Alpha,
TestType)

Description [H,pValue,TestStat,CriticalValue] =
dfARTest(Y,Lags,Alpha,TestType) performs an augmented
Dickey-Fuller univariate unit root test. This test assumes that the true
underlying process is a zero drift unit root process. As an alternative,
OLS regression estimates a zero drift (P+1)th order autoregressive
(AR(P+1)) model.

Specifically, if:

• yt and ε t are the time series of observed data and model residuals,
respectively, and

• Δy y yt t t= − −1 is the first difference operator

then under the null hypothesis the true underlying process is a zero
drift ARIMA(P,1,0) model

Δ Δ Δ Δy y y y yt t t t p t p t= + + + +− − − −1 1 1 2 2ζ ζ ζ ε...

Which is equivalent to an integrated AR(P+1) model.

As an alternative, the estimated OLS regression model is

Δ Δ Δ Δy y y y yt t t t p t p t= + + + +− − − −φ ζ ζ ζ ε1 1 1 2 2 ...

for some AR(1) coefficient φ < 1.

13-20



dfARTest

Input
Arguments

Y Time-series vector of observed data tested for a unit
root. The last element contains the most recent
observation. dfARTest represents missing values as
NaNs and removes them, thereby reducing the sample
size.

Lags (Optional) Scalar or vector of nonnegative integers.
This parameter indicates the number of lagged changes
(that is, first differences) of Y included in the OLS
regression model (see P above). Lags serves as a
correction for serial correlation of residuals. If Lags
is empty or missing, the default is 0 (no correction for
serial correlation).

Alpha (Optional) Scalar or vector of significance levels of
the test. All elements of the input argument must be
0.001 ≤ Alpha ≤ 0.999.

TestType (Optional) Character string indicating the type of unit
root test. Possible choices are:

• t, indicating an OLS t test of the AR(1) coefficient

• AR, indicating a test of the unstudentized AR(1)
coefficient

dfARTest performs a case-insensitive check of
TestType. If it is empty or missing, the default is a
t test.

13-21



dfARTest

Output
Arguments

H Logical decision vector. Elements of H = 0
indicate acceptance of the null hypothesis;
elements of H = 1 indicate rejection of the null
hypothesis. Each element of H is associated with
a particular lag of Lags and significance level of
Alpha.

pValue Vector of p-values (significance levels) associated
with the test decision vector H. Each element of
pValue represents the probability of observing a
test statistic at least as extreme as that calculated
from the OLS regression model when the null
hypothesis is true. dfARTest obtains p-values by
interpolation into the appropriate table of critical
values.

When a p-value is outside of the range of
tabulated significance levels (that is 0.001 <=
Alpha <=0.999), a warning appears. dfARTest
then sets pValue to the appropriate limit (pValue
= 0.001 or 0.999).

TestStat Vector of test statistics associated with the
decision vector H.

CriticalValue Vector of critical values associated with the
decision vector H.

Notes You can specify both Lags and Alpha as scalars or vectors. If you specify
both as vectors, they must be the same length (that is, they must have
the same number of elements). If you specify one as a scalar and the
other as a vector, dfARTest performs a scalar expansion to enforce
vectors of identical length. If Lags is a scalar or an empty matrix, by
default, all outputs are column vectors.

13-22



dfARTest

All vector outputs are the same length as vector inputs Alpha and/or
Lags. By default all vector outputs are column vectors. If Lags is a row
vector, however, all vector outputs are row vectors.

This univariate unit root test is a conventional lower tailed test.
dfARTest compares the test statistic with the critical value to determine
whether the test is accepted or rejected. If the test statistic is less than
the critical value, reject the null hypothesis.

See Also dfARDTest, dfTSTest, ppARDTest, ppARTest, ppTSTest

References Hamilton, J.D., Time Series Analysis, Princeton University Press,
Princeton, NJ, 1994.

Greene, W.H., Econometric Analysis, Prentice Hall, Fifth edition, Upper
Saddle River, NJ, 2003.

Enders, W., Applied Econometric Time Series, John Wiley & Sons, New
York, 1995.

Campbell, J.Y., A.W. Lo, and A.C. MacKinlay, The GARCH of Financial
Markets, Princeton University Press, Princeton, NJ, 1997.

13-23



dfTSTest

Purpose Run augmented Dickey-Fuller unit root test based on trend stationary
AR model

Syntax [H,pValue,TestStat,CriticalValue] = dfTSTest(Y,Lags,Alpha,
TestType)

Description [H,pValue,TestStat,CriticalValue] =
dfTSTest(Y,Lags,Alpha,TestType) performs an augmented
Dickey-Fuller univariate unit root test. This test assumes that the
true underlying process is a unit root process with drift. As an
alternative, OLS regression estimates a trend stationary (P+1)th order
autoregressive (AR(P+1)) model plus additive constant.

Specifically, if:

• yt and ε t are the time series of observed data and model residuals,
respectively, and

• Δy y yt t t= − −1 is the first difference operator

then under the null hypothesis the true underlying process is an
ARIMA(P,1,0) model with drift

Δ Δ Δ Δy C y y y yt t t t p t p t= + + + + +− − − −1 1 1 2 2ζ ζ ζ ε...

Which is equivalent to an integrated AR(P+1) model.

As an alternative, the estimated OLS regression model is

Δ Δ Δ Δy C y y y yt t t t p t p t= + + + + +− − − −φ ζ ζ ζ ε1 1 1 2 2 ...

for some constant C, AR(1) coefficient φ < 1, and trend stationary
coefficient δ.

13-24



dfTSTest

Input
Arguments

Y Time-series vector of observed data tested for a unit
root. The last element contains the most recent
observation. dfTSTest represents missing values as
NaNs and removes them, thereby reducing the sample
size.

Lags (Optional) Scalar or vector of nonnegative integers.
This parameter indicates the number of lagged changes
(that is, first differences) of Y included in the OLS
regression model (see P above). Lags serves as a
correction for serial correlation of residuals. If Lags is
empty or missing, the default is 0 (no correction for
serial correlation).

Alpha (Optional) Scalar or vector of significance levels of
the test. All elements of the input argument must be
0.001 ≤ Alpha ≤ 0.999.

TestType (Optional) Character string indicating the type of unit
root test. Possible choices are t, AR, and F, indicating
an OLS t test of the AR(1) coefficient, a test of the
unstudentized AR(1) coefficient, and a joint OLS F
test of a unit root (Φ= 1) with zero trend stationary
coefficient (δ = 1), respectively. dfTSTest performs a
case-insensitive check of TestType. If it is empty or
missing, the default is a t test.

13-25



dfTSTest

Output
Arguments

H Logical decision vector. Elements of H = 0
indicate acceptance of the null hypothesis;
elements of H = 1 indicate rejection of the null
hypothesis. Each element of H is associated with
a particular lag of Lags and significance level of
Alpha.

pValue Vector of p-values (significance levels) associated
with the test decision vector H. Each element of
pValue represents the probability of observing a
test statistic at least as extreme as that calculated
from the OLS regression model when the null
hypothesis is true. dfTSTest obtains p-values by
interpolation into the appropriate table of critical
values.

When a p-value is outside of the range of
tabulated significance levels (that is 0.001 <=
Alpha <=0.999), a warning appears. dfTSTest
then sets pValue to the appropriate limit (pValue
= 0.001 or 0.999).

TestStat Vector of test statistics associated with the
decision vector H.

CriticalValue Vector of critical values associated with the
decision vector H.

Notes You can specify both Lags and Alpha as scalars or vectors. If you specify
both as vectors, they must be the same length (that is, they must have
the same number of elements). If you specify one as a scalar and the
other as a vector, dfTSTest performs a scalar expansion to enforce
vectors of identical length. If Lags is a scalar or an empty matrix, by
default, all outputs are column vectors.

13-26



dfTSTest

All vector outputs are the same length as vector inputs Alpha and/or
Lags. By default, all vector outputs are column vectors. If Lags is a row
vector, however, all vector outputs are row vectors.

This univariate unit root test is a conventional single-tailed
test.dfTSTest compares the test statistic with the critical value to
determine whether the test is accepted or rejected:

• The AR and t tests are lower-tailed tests. Reject the null hypothesis if
the test statistic is less than the critical value.

• The joint F test is an upper-tailed test. Reject the null hypothesis if
the test statistic is greater than the critical value.

See Also dfARDTest, dfARTest, ppARDTest, ppARTest, ppTSTest

References Hamilton, J.D., Time Series Analysis, Princeton University Press,
Princeton, NJ, 1994.

Greene, W.H., Econometric Analysis, Prentice Hall, Fifth edition, Upper
Saddle River, NJ, 2003.

Enders, W., Applied Econometric Time Series, John Wiley & Sons, New
York, 1995.

Campbell, J.Y., A.W. Lo, and A.C. MacKinlay, The GARCH of Financial
Markets, Princeton University Press, Princeton, NJ, 1997.

13-27



garchar

Purpose Convert finite-order ARMA models to infinite-order autoregressive (AR)
models

Syntax InfiniteAR = garchar(AR,MA,NumLags)

Description InfiniteAR = garchar(AR,MA,NumLags) computes the coefficients
of an infinite-order AR model, using the coefficients of the equivalent
univariate, stationary, invertible, finite-order ARMA(R,M) model
as input. garchar truncates the infinite-order AR coefficients to
accommodate a user-specified number of lagged AR coefficients.

Input
Arguments

AR R-element vector of autoregressive coefficients associated
with the lagged observations of a univariate return
series modeled as a finite-order, stationary, invertible
ARMA(R,M) model.

MA M-element vector of moving-average coefficients
associated with the lagged innovations of a finite-order,
stationary, invertible univariate ARMA(R,M) model.

NumLags (optional) Number of lagged AR coefficients that garchar
includes in the approximation of the infinite-order
AR representation. NumLags is an integer scalar and
determines the length of the infinite-order AR output
vector. If NumLags = [] or is unspecified, the default is
10.

13-28



garchar

Output
Arguments

InfiniteAR Vector of coefficients of the infinite-order AR
representation associated with the finite-order
ARMA model specified by the AR and MA input
vectors. InfiniteAR is a vector of length NumLags.
The jth element of InfiniteAR is the coefficient of
the jth lag of the input series in an infinite-order AR
representation. Box, Jenkins, and Reinsel refer to the
infinite-order AR coefficients as "πweights."

In the following ARMA(R,M) model, {yt} is the return series of interest
and{ε t} the innovations noise process.

y yt i
i

R

t t j
j

M

j= +
=

−
=

−∑ ∑φ ε θ ε
1

1
1

1

If you write this model equation as

y y yt t R t R t t M t M= + + + + + +− − − −φ φ ε θ ε θ ε1 1 1 1... ...

you can specify the garchar input coefficient vectors, AR and MA,
as you read them from the model. In general, the jth elements of
AR and MA are the coefficients of the jth lag of the return series and
innovations processes yt-j and ε t-j, respectively. garchar assumes that
the current-time-index coefficients ofyt and ε t are 1 and are not part of
AR and MA.

In theory, you can use the π weights returned in InfiniteAR to
approximateyt as a pure AR process.

y yt i
i

t i t= +
=

∞

−∑π ε
1

13-29



garchar

In this equation, the jth element of the truncated infinite-order
autoregressive output vector,πj or InfiniteAR(j), is consistently the
coefficient of the jth lag of the observed return series, yt-j. See Box,
Jenkins, and Reinsel [10], Section 4.2.3, pages 106-109.

Examples For the following ARMA(2,2) model, use garchar to obtain the first 20
weights of the infinite-order AR approximation.

y y yt t t t t t= − + − +− − − −0 5 0 8 0 6 0 081 2 1 2. . . .ε ε ε

From this model,

AR = [0.5 -0.8]
MA = [-0.6 0.08]

Since the current-time-index coefficients of yt and ε t are 1, the example
omits them from AR and MA. This saves time and effort when you specify
parameters using the garchset and garchget interfaces.

PI = garchar([0.5 -0.8], [-0.6 0.08], 20);
PI'

ans =
-0.1000
-0.7800
-0.4600
-0.2136
-0.0914
-0.0377
-0.0153
-0.0062
-0.0025
-0.0010
-0.0004
-0.0002
-0.0001
-0.0000

13-30



garchar

-0.0000
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000

See Also garchfit, garchma, garchpred

References Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

13-31



garchcount

Purpose Count number of GARCH estimation coefficients

Syntax NumParams = garchcount(Coeff)

Description NumParams = garchcount(Coeff) counts and returns the number of
estimated coefficients from a specification structure, as returned by
garchfit, containing coefficient estimates and equality constraint
information. garchcount is a helper utility designed to support the
model selection function aicbic.

Input
Arguments

Coeff Specification structure containing coefficient estimates
and equality constraints. Coeff is an output of the
estimation function garchfit.

Output
Arguments

NumParams Number of estimated parameters, that is, coefficients,
included in the conditional mean and variance
specifications, less any parameters held constant,
as equality constraints, during the estimation. The
aicbic function needs NumParams to calculate the
Akaike (AIC) and Bayesian (BIC) statistics.

Examples See “Akaike and Bayesian Information Criteria” on page 10-6.

See Also aicbic, garchdisp, garchfit

13-32



garchdisp

Purpose Display GARCH process estimation results

Syntax garchdisp(Coeff,Errors)

Description garchdisp(Coeff,Errors) displays coefficient estimates, standard
errors, and T-statistics from a GARCH specification structure that was
output by the estimation function garchfit.

This function displays estimation results, and returns no output
arguments. The tabular display includes parameter estimates, standard
errors, and T-statistics for each parameter in the conditional mean
and variance models. The standard error and T-statistic columns of
parameters held fixed during the estimation process display 'Fixed'.
This indicates that the parameter is an equality constraint.

Input
Arguments

Coeff GARCH specification structure containing estimated
coefficients and equality constraint information. Coeff is
an output of the estimation function garchfit.

Errors Structure containing the estimation errors (that is, the
standard errors) of the coefficients in Coeff. Errors is
also an output of the estimation function garchfit.

Examples 1 Use garchfit to generate the GARCH specification structure Coeff
and the standard errors structure Errors, for a return series of 1000
simulated observations based on a GARCH(1,1) model:

spec = garchset('C', 0, 'K', 0.0001,...
'GARCH', 0.9, 'ARCH', 0.05,'Display', 'off');

randn('state',0);
rand('twister',0);
[e, s, y] = garchsim(spec, 1000);
[Coeff, Errors] = garchfit(spec, y);

13-33



garchdisp

2 Run garchdisp to display the estimation results:

garchdisp(Coeff, Errors)
Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 4

Standard T
Parameter Value Error Statistic

----------- ----------- ------------ -----------
C -0.0024756 0.0012919 -1.9163
K 4.6585e-005 5.3358e-005 0.8731

GARCH(1) 0.93927 0.041453 22.6588
ARCH(1) 0.035442 0.015082 2.3499

Tip Setting 'Display' to 'off' suppresses display of the iterative
optimization information produced by garchfit.

See Also garchcount, garchfit

13-34



garchfit

Purpose Estimate univariate GARCH process parameters

Syntax [Coeff,Errors,LLF,Innovations,Sigmas,Summary] = ...
garchfit(Series)

[...] = garchfit(Spec,Series)
[...] = garchfit(Spec,Series,X)
[...] = garchfit(Spec,Series,X,...
PreInnovations,PreSigmas,PreSeries)

garchfit(...)

Description Given an observed univariate return series, garchfit estimates the
parameters of a conditional mean specification of ARMAX form, and
conditional variance specification of GARCH, EGARCH, or GJR form.
The estimation process infers the innovations (that is, residuals) from
the return series. It then fits the model specification to the return
series by maximum likelihood.

• [Coeff,Errors,LLF,Innovations,Sigmas,Summary] = ...
garchfit(Series) models an observed univariate return series as

a constant, C, plus GARCH(1,1) conditionally Gaussian innovations.
For models more complicated than this one, you must provide model
parameters in the GARCH specification structure Spec.

• [...] = garchfit(Spec,Series) infers the innovations from the
return series and fits the model specification, contained in Spec, to
the return series by maximum likelihood.

• [...] = garchfit(Spec,Series,X) provides a regression
component X for the conditional mean.

• [...] = garchfit(Spec,Series,X,...
PreInnovations,PreSigmas,PreSeries) uses presample

observations, contained in the time-series column vectors
PreInnovations, PreSigmas, and PreSeries, to infer the outputs
Innovations and Sigmas. These vectors form the conditioning
set used to initiate the inverse filtering, or inference, process. If
you provide no explicit presample data, the necessary presample

13-35



garchfit

observations derive from conventional time-series techniques (see
“Automatically Minimizing Transient Effects” on page 4-7).

If you specify at least one, but fewer than three, sets of presample data,
garchsim does not attempt to derive presample observations for those
you omit. When specifying your own presample data, be sure to specify
all data required for the given conditional mean and variance models.
See “User-Specified Presample Observations” on page 6-12.

garchfit(...) with input arguments as shown but with no output
arguments, displays the final parameter estimates and standard errors.
It also produces a tiered plot of the original return series, the inferred
innovations, and the corresponding conditional standard deviations.

Input
Arguments

Spec GARCH specification structure containing the
conditional mean and variance specifications.
It also contains the optimization parameters
needed for the estimation. Create this structure
by calling garchset, or use the Coeff output
structure returned by garchfit.

Series Time-series column vector of observations of the
underlying univariate return series of interest.
Series is the response variable representing
the time series to be fitted to conditional mean
and variance specifications. The last element of
Series holds the most recent observation.

13-36



garchfit

X Time-series regression matrix of observed
explanatory data. Typically, X is a matrix
of asset returns (for example, the return
series of an equity index), and represents the
past history of the explanatory data. Each
column of X is an individual time series used
as an explanatory variable in the regression
component of the conditional mean. In each
column, the first row contains the oldest
observation and the last row the most recent.

The number of valid (non-NaN) most recent
observations in each column of X must equal
or exceed the number of valid most recent
observations in Series. If the number of valid
observations in a column of X exceeds that of
Series, garchfit uses only the most recent
observations of X. If X = [] or is unspecified, the
conditional mean has no regression component.

PreInnovations Time-series column vector of presample
innovations that garchfit uses to condition
the recursive mean and variance models. This
column vector can have any number of rows,
provided it contains sufficient observations to
initialize the mean and variance equations.
That is, if M and Q are the number of lagged
innovations required by the conditional mean
and variance equations, respectively, then
PreInnovations must have at least max(M,Q)
rows. If the number of rows exceeds max(M,Q),
then garchfit uses only the last (that is, most
recent) max(M,Q) rows.

13-37



garchfit

PreSigmas Time-series column vector of positive presample
conditional standard deviations that garchfit
uses to condition the recursive variance model.
This vector can have any number of rows, as
long as it contains sufficient observations to
initialize the conditional variance equation.
That is, if P and Q are the number of lagged
conditional standard deviations and lagged
innovations required by the conditional
variance equation, respectively, then PreSigmas
must have at least P rows for GARCH and
GJR models, and at least max(P,Q) rows
for EGARCH models. If the number of rows
exceeds the requirement, then garchfit uses
only the last (that is, most recent) rows.

PreSeries Time-series column vector of presample
observations of the return series of interest
that garchfit uses to condition the recursive
mean model. This vector can have any
number of rows, provided it contains sufficient
observations to initialize the conditional mean
equation. Thus, if R is the number of lagged
observations of the return series required by
the conditional mean equation, then PreSeries
must have at least R rows. If the number of
rows exceeds R, then garchfit uses only the
last (that is, most recent) R rows.

13-38



garchfit

Output
Arguments

Coeff GARCH specification structure containing the
estimated coefficients. Coeff is of the same form as
the Spec input structure. Toolbox functions such as
garchset, garchget, garchsim, garchinfer, and
garchpred can accept either Spec or Coeff as input
arguments.

Errors Structure containing the estimation errors (that is,
the standard errors) of the coefficients. Errors is
of the same form as the Spec and Coeff structures.
If an error occurs in the calculation of the standard
errors, garchfit sets all fields associated with
estimated coefficients to NaN.

LLF Optimized log-likelihood objective function value
associated with the parameter estimates found in
Coeff. garchfit performs the optimization using
the Optimization Toolbox™ fmincon function.

Innovations Innovations (that is, residuals) time-series
column vector inferred from Series. The size of
Innovations is the same as the size of Series. If
an error occurs, garchfit returns Innovations as
a vector of NaNs.

Sigmas Conditional standard deviation vector
corresponding to Innovations. The size of Sigmas
is the same as the size of Series. If an error occurs,
garchfit returns Sigmas as a vector of NaNs.

Summary Structure of summary information about the
optimization process. The fields and their possible
values are as follows:

13-39



garchfit

exitFlag Describes the exit condition:

• Positive — Log-likelihood
objective function converged
to a solution.

• 0 — Maximum number
of function evaluations or
iterations was exceeded.

• Negative — Log-likelihood
objective function did not
converge to a solution.

warning One of the following strings:

• No Warnings

• ARMA Model Is Not
Stationary/Invertible

converge One of the following strings:

• Function Converged to a
Solution

• Function Did NOT
Converge

• Maximum Function
Evaluations or
Iterations Reached

constraints One of the following strings:

• No Boundary Constraints

• Boundary Constraints
Active; Errors May Be
Inaccurate

13-40



garchfit

covMatrix Covariance matrix of the
parameter estimates

iterations Number of iterations

functionCalls Number of function evaluations

lambda Structure, output by fmincon,
containing the Lagrange
multipliers at the solution x

Note garchfit calculates the error covariance matrix of the parameter
estimates Summary.covMatrix, and the corresponding standard
errors found in the Errors output structure using finite difference
approximation. In particular, it calculates the standard errors using
the outer-product method. For more information, see Section 5.8 in
Hamilton (References follow).

Examples Example 1

The following example uses garchfit to estimate the parameters for a
return series of 1000 simulated observations based on a GARCH(1,1)
model. Because the 'Display' parameter defaults to 'on', garchfit
displays diagnostic and iterative information:

spec = garchset('C',0,'K',0.0001,'GARCH',0.9,'ARCH',0.05);
randn('state', 0); rand('twister', 0);
[e,s,y] = garchsim(spec,1000);
[Coeff,Errors] = garchfit(spec,y);

13-41



garchfit

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Diagnostic Information

Number of variables: 4

Functions

Objective: garchllfn

Gradient: finite-differencing

Hessian: finite-differencing (or Quasi-Newton)

Nonlinear constraints: armanlc

Gradient of nonlinear constraints: finite-differencing

Constraints

Number of nonlinear inequality constraints: 0

Number of nonlinear equality constraints: 0

Number of linear inequality constraints: 1

Number of linear equality constraints: 0

Number of lower bound constraints: 4

Number of upper bound constraints: 4

Algorithm selected

medium-scale

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

End diagnostic information

13-42



garchfit

Max Line search Directional First-order

Iter F-count f(x) constraint steplength derivative optimality Procedure

0 5 -1762.16 -9.98e-005

1 21 -1762.62 -9.975e-005 0.000488 1.32e+004 1.47e+004

2 33 -1763.04 -9.897e-005 0.00781 126 2.13e+005

3 40 -1764.68 -7.423e-005 0.25 4.18 1.28e+005

4 53 -1764.72 -7.477e-005 0.00391 6.92 1.12e+005

5 59 -1765.27 -4.128e-005 0.5 0.216 3.2e+003

6 72 -1765.28 -4.75e-005 0.00391 4.2 2.99e+004

7 82 -1765.28 -4.619e-005 0.0313 0.066 3.02e+004

8 93 -1765.29 -4.832e-005 0.0156 0.2 2.48e+003

9 98 -1765.29 -4.639e-005 1 -0.000171 14.6

10 117 -1765.29 -4.639e-005 -6.1e-005 -1.03e-005 14.6

11 124 -1765.29 -4.638e-005 0.25 -5.52e-006 2.34

Hessian modified twice

12 132 -1765.29 -4.638e-005 0.125 7.71e-006 38

Hessian modified twice

13 138 -1765.29 -4.638e-005 0.5 1.05e-006 126

Hessian modified twice

Optimization terminated: magnitude of directional derivative in search

direction less than 2*options.TolFun and maximum constraint violation

is less than options.TolCon.

No active inequalities.

Example 2

Using the same data as in Example 1, the example sets 'Display'
to 'off' and calls garchfit with no output arguments. garchfit
then displays the final parameter estimates and standard errors, then
produces a tiered plot:

spec = garchset(spec,'Display','off');
garchfit(spec, y);
Mean: ARMAX(0, 0, 0); Variance: GARCH(1, 1)
Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 4

Standard T

13-43



garchfit

Parameter Value Error Statistic
----------- ----------- ------------ -----------

C -0.0024759 0.0012919 -1.9165
K 4.6877e-005 5.3555e-005 0.8753

GARCH(1) 0.93904 0.041604 22.5707
ARCH(1) 0.035503 0.015123 2.3477

Log Likelihood Value: 1765.29

See Also garchpred, garchset, garchsim

fmincon (Optimization Toolbox function)

References Bollerslev, T., “A Conditionally Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return,” Review of Economics and
Statistics, Vol. 69, 1987, pp 542-547.

13-44



garchfit

Bollerslev, T., “Generalized Autoregressive Conditional
Heteroskedasticity,” Journal of GARCH, Vol. 31, 1986, pp 307-327.

Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

Enders, W., Applied Econometric Time Series, John Wiley & Sons, 1995.

Engle, Robert, “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica,
Vol. 50, 1982, pp 987-1007.

Engle, R.F., D.M. Lilien, and R.P. Robins, “Estimating Time
Varying Risk Premia in the Term Structure: The ARCH-M Model,”
Econometrica, Vol. 59, 1987, pp 391-407.

Glosten, L.R., R. Jagannathan, and D.E. Runkle, “On the Relation
Between Expected Value and the Volatility of the Nominal Excess
Return on Stocks,” The Journal of Finance, Vol.48, 1993, pp 1779-1801.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

Nelson, D.B., “Conditional Heteroskedasticity in Asset Returns: A New
Approach,” Econometrica, Vol. 59, 1991, pp 347-370.

13-45



garchget

Purpose Get value of GARCH specification structure parameter

Syntax ParameterValue = garchget(Spec,ParameterName)

Description ParameterValue = garchget(Spec,ParameterName) returns the value
of the specified parameter from the GARCH specification structure
Spec.

Input
Arguments

Spec GARCH specification structure returned by
garchset, or the output (Coeff) of the estimation
function garchfit.

ParameterName String indicating the name of the parameter
whose value garchget extracts from Spec. It
is sufficient to type only the leading characters
that uniquely identify a parameter name. See
garchset for a list of valid parameter names.
ParameterName is case insensitive.

Output
Arguments

ParameterValue Value of the named parameter extracted from
the structure Spec. garchget returns the
appropriate model default value if the specified
parameter is undefined in the specification
structure.

Examples 1 Create a GARCH(P=1, Q=1) model spec:

Spec = garchset('P', 1, 'Q', 1)
Spec =

Comment: 'Mean: ARMAX(0, 0, ?); Variance: GARCH(1, 1)'

13-46



garchget

Distribution: 'Gaussian'
C: []

VarianceModel: 'GARCH'
P: 1
Q: 1
K: []

GARCH: []
ARCH: []

2 Retrieve the value of the parameter P:

P = garchget(Spec, 'P') % Retrieve the order P

P =

1

See Also garchfit, garchpred, garchset, garchsim

13-47



garchinfer

Purpose Infer GARCH innovation processes from return series

Syntax [Innovations,Sigmas,LLF] = garchinfer(Spec,Series)
[...] = garchinfer(Spec,Series,X)
[...] = garchinfer(Spec,Series,X,...
PreInnovations,PreSigmas,PreSeries)

Description • [Innovations,Sigmas,LLF] = garchinfer(Spec,Series), given
a conditional mean specification of ARMAX form and conditional
variance specification of GARCH, EGARCH, or GJR form, infers the
innovations and conditional standard deviations from an observed
univariate return series. Since garchinfer is an interface to the
appropriate log-likelihood objective function, the log-likelihood value
is also computed for convenience.

• [...] = garchinfer(Spec,Series,X) accepts a time-series
regression matrix X of observed explanatory data. garchinfer treats
each column of X as an individual time series, and uses it as an
explanatory variable in the regression component of the conditional
mean.

• [...] = garchinfer(Spec,Series,X,...
PreInnovations,PreSigmas,PreSeries) uses presample

observations, represented by the time-series matrices or column
vectors PreInnovations, PreSigmas, and PreSeries, to infer
the outputs Innovations and Sigmas. These vectors form the
conditioning set used to initiate the inverse filtering, or inference,
process.

If you specify the presample data as matrices, the number of columns
(realizations) of each must be the same as the number of columns
(realizations) of the Series input. In this case, garchinfer uses the
presample information of a given column to infer the residuals and
standard deviations of the corresponding column of Series. If you
specify the presample data as column vectors, garchinfer applies the
vectors to each column of Series.

13-48



garchinfer

If you provide no explicit presample data, garchinfer derives the
necessary presample observations using conventional time-series
techniques, as described in“Automatically Minimizing Transient
Effects” on page 4-7.

If you specify at least one, but fewer than three, sets of presample data,
garchsim does not attempt to derive presample observations for those
you omit. When specifying your own presample data, be sure to specify
all data required by the given conditional mean and variance models.
See “User-Specified Presample Observations” on page 6-12.

Input
Arguments

Spec GARCH specification structure that contains the
conditional mean and variance specifications.
It also contains the optimization parameters
needed for the estimation. Create this structure
by calling garchset, or by using the Coeff
output structure returned by garchfit.

Series Time-series matrix or column vector of
observations of the underlying univariate return
series of interest. Series is the response variable
representing the time series fitted to conditional
mean and variance specifications. Each column
of Series in an independent realization (that is,
path). The last row of Series holds the most
recent observation of each realization.

13-49



garchinfer

X Time-series regression matrix of explanatory
variables. Typically, X is a regression matrix of
asset returns (for example, the return series
of an equity index). Each column of X is an
individual time series used as an explanatory
variable in the regression component of the
conditional mean. In each column, the first row
contains the oldest observation and the last row
the most recent.

The number of valid (non-NaN) observations
below the last NaN in each column of X must
equal or exceed the number of valid observations
below the last NaN in Series. If the number of
valid observations in a column of X exceeds that
of Series, garchinfer uses only the most recent.
If X = [] or is unspecified, the conditional mean
has no regression component.

PreInnovations Time-series matrix or column vector of presample
innovations on which the recursive mean and
variance models are conditioned. This array can
have any number of rows, provided it contains
sufficient observations to initialize the mean
and variance equations. That is, if M and Q are
the number of lagged innovations required by
the conditional mean and variance equations,
respectively, then PreInnovations must have
at least max(M,Q) rows.

If the number of rows exceeds max(M,Q), then
garchinfer uses only the last (that is, most
recent) max(M,Q) rows. If PreInnovations is a
matrix, then the number of columns must be
the same as the number of columns in Series.
If PreInnovations is a column vector, then
garchinfer applies the vector to each column
(realization) of Series.

13-50



garchinfer

PreSigmas Time-series matrix or column vector of positive
presample conditional standard deviations
on which the recursive variance model is
conditioned. This array can have any number of
rows, provided it contains sufficient observations
to initialize the conditional variance equation.
For example, if P and Q are the number of lagged
conditional standard deviations and lagged
innovations required by the conditional variance
equation, respectively, then PreSigmas must
have:

• At least P rows for GARCH and GJR models,
and

• At least max(P,Q) rows for EGARCH models.

If the number of rows exceeds the requirement,
then garchinfer uses only the last ( most recent)
rows. If PreSigmas is a matrix, then the number
of columns must be the same as the number of
columns in Series. If PreSigmas is a column
vector, then garchinfer applies the vector to
each column (realization) of Series.

PreSeries Time-series matrix or column vector of presample
observations of the return series of interest on
which the recursive mean model is conditioned.
This array can have any number of rows,
provided it contains sufficient observations to
initialize the conditional mean equation. Thus,
if R is the number of lagged observations of the
return series required by the conditional mean
equation, then PreSeries must have at least
R rows. If the number of rows exceeds R, then
garchinfer uses only the last (most recent) R
rows. If PreSeries is a matrix, then the number
of columns must be the same as the number of

13-51



garchinfer

columns in Series. If PreSeries is a column
vector, then garchinfer applies the vector to
each column (realization) of Series.

Output
Arguments

Innovations Innovations time-series matrix inferred from
Series. The size of Innovations is the same as
the size of Series.

Sigmas Conditional standard deviation time-series matrix
corresponding to Innovations. The size of Sigmas
is the same as the size of Series.

LLF Row vector of log-likelihood objective function
values for each realization of Series. The length
of LLF is the same as the number of columns in
Series.

Remarks garchinfer performs essentially the same operation as garchfit, but
without optimization. garchfit calls the appropriate log-likelihood
objective function indirectly via the iterative numerical optimizer.
garchinfer, however, allows you direct access to the same suite of
log-likelihood objective functions.

These garchinfer inputs:

• Series

• PreInnovations

• PreSigmas

• PreSeries

And outputs:

13-52



garchinfer

• Innovations

• Sigmas

are column-oriented time-series arrays in which each column is
associated with a unique realization, or random path. For garchfit,
these same inputs and outputs cannot have multiple columns; they
must all represent single realizations of a univariate time series.

For additional details about estimation and inverse filtering, see
“Maximum Likelihood Estimation” on page 6-2 and “Presample
Observations” on page 6-12.

Examples • “Presample Data and Transient Effects” on page 6-24

• “Generating Presample Observations” on page 7-6

• “Estimating the Model” on page 11-3

See Also garchfit, garchpred, garchset, garchsim

References Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

13-53



garchma

Purpose Convert finite-order ARMA models to infinite-order moving average
(MA) models

Syntax InfiniteMA = garchma(AR,MA,NumLags)

Description InfiniteMA = garchma(AR,MA,NumLags) computes the coefficients of
an infinite-order MA model, using the coefficients of the equivalent
univariate, stationary, invertible, finite-order ARMA(R,M) model
as input. garchma truncates the infinite-order MA coefficients to
accommodate the number of lagged MA coefficients you specify in
NumLags.

This function is useful for calculating the standard errors of minimum
mean square error forecasts of univariate ARMA models.

Arguments

AR R-element vector of autoregressive coefficients associated
with the lagged observations of a univariate return
series modeled as a finite-order, stationary, invertible
ARMA(R,M) model.

MA M-element vector of moving-average coefficients
associated with the lagged innovations of a finite-order,
stationary, invertible, univariate ARMA(R,M) model.

NumLags (optional) Number of lagged MA coefficients that garchma
includes in the approximation of the infinite-order
MA representation. NumLags is an integer scalar and
determines the length of the infinite-order MA output
vector. If NumLags = [] or is unspecified, the default is
10.

13-54



garchma

Output
Arguments

InfiniteMA Vector of coefficients of the infinite-order MA
representation associated with the finite-order ARMA
model specified by AR and MA. InfiniteMA is a vector
of length NumLags. The jth element of InfiniteMA is
the coefficient of the jth lag of the innovations noise
sequence in an infinite-order MA representation.
Box, Jenkins, and Reinsel refer to the infinite-order
MA coefficients as the "ψweights."

In the following ARMA(R,M) model,{yt} is the return series of interest
and {ε t} the innovations noise process.

y yt i
i

R

t t j
j

M

j= +
=

−
=

−∑ ∑φ ε θ ε
1

1
1

1

If you write this model equation as

y y yt t R t R t t M t M= + + + + + +− − − −φ φ ε θ ε θ ε1 1 1 1... ...

you can specify the garchma input coefficient vectors, AR and MA,
as you read them from the model. In general, the jth elements of
AR and MA are the coefficients of the jth lag of the return series and
innovations processes yt-j and ε t-j, respectively. garchma assumes that
the current-time-index coefficients of yt and ε t are 1 and are not part of
AR and MA.

In theory, you can use the ψ weights returned in InfiniteMA to
approximate yt as a pure MA process.

yt t i
i

t i= +
=

∞

−∑ε ψ ε
1

13-55



garchma

The jth element of the truncated infinite-order moving-average output
vector, ψj or InfiniteMA(j), is consistently the coefficient of the jth lag
of the innovations process, ε t-j, in this equation. See Box, Jenkins, and
Reinsel [10], Section 5.2.2, pages 139-141.

Examples Calculate a forecast horizon of 10 periods for the following ARMA(2,2)
model:

y y yt t t t t t= − + − +− − − −0 5 0 8 0 6 0 081 2 1 2. . . .ε ε ε

To obtain probability limits for these forecasts, use garchma to
compute the first 9 (that is, 10 - 1) weights of the infinite order MA
approximation.

PSI = garchma([0.5 -0.8], [-0.6 0.08], 9);
PSI'

ans =

-0.1000
-0.7700
-0.3050
0.4635
0.4758

-0.1329
-0.4471
-0.1172
0.2991

From the model, AR = [0.5 -0.8] and MA = [-0.6 0.08].

Note Since the current-time-index coefficients ofyt and ε t are 1, the
example omits them from AR and MA. This saves time and effort when
you specify parameters via the garchset and garchget user interfaces.

13-56



garchma

See Also garchar, garchpred

References Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

13-57



garchplot

Purpose Plot matched univariate innovations, volatility, and return series

Syntax garchplot(Innovations,Sigmas,Series)

Description garchplot(Innovations,Sigmas,Series) lets you visually compare
matched innovations, conditional standard deviations, and returns. It
provides a convenient way to compare innovations series, simulated
using garchsim or estimated using garchfit, with companion
conditional standard deviations, or returns series. You can also use
garchplot to plot forecasts, computed using garchpred, of conditional
standard deviations and returns.

In general, garchplot produces a tiered plot of matched time series.
garchplot does not display an empty or missing input array; it allocates
no space to the array in the tiered figure window. garchplot displays
valid (nonempty) Innovations, Sigmas, and Series arrays in the top,
center, and bottom plots, respectively. Because garchplot assigns a
title and label to each plot according to its position in the argument
list, you can ensure correct plot annotation by using empty matrices
([]) as placeholders.

You can plot several realizations of each array simultaneously because
garchplot color codes corresponding realizations of each input array.
However, the plots can become cluttered if you try to display more than
a few realizations of each input at one time.

Input
Arguments

Innovations Time-series column vector or matrix of innovations.
As a column vector, Innovations represents a
single realization of a univariate time series.
The first element of this time series contains the
oldest observation, and the last element the most
recent. As a matrix, each column of Innovations
represents a single realization of a univariate time
series in which the first row contains the oldest
observation of each realization and the last row the

13-58



garchplot

most recent. If Innovations = [], then garchplot
does not display it.

Sigmas Time-series column vector or matrix of conditional
standard deviations. In general, Innovations and
Sigmas are the same size, and form a matching pair
of arrays. If Sigmas = [], then garchplot does
not display it.

Series Time-series column vector or matrix of asset
returns. In general, Series is the same size as
Innovations and Sigmas, and garchplot organizes
it in the same way. If Series = [] or is unspecified,
then garchplot does not display it.

Examples Example 1

Plot Innovations, Sigmas, and Series, assuming that they are not
empty:

garchplot(Innovations)

garchplot(Innovations, [], Series)

garchplot([], Sigmas, Series)

garchplot(Innovations, Sigmas, Series)

garchplot(Innovations, Sigmas, [])

garchplot(Innovations, Sigmas)

Example 2

1 Load the default GARCH(1,1) model to model the
Deutschmark/British pound foreign-exchange series DEM2GBP:

load garchdata
dem2gbp = price2ret(DEM2GBP);

2 Use the estimated model to generate a single path of 1000
observations for return series, innovations, and conditional standard
deviation processes:

13-59



garchplot

[coeff, errors, LLF, innovations, sigmas] = garchfit(dem2gbp);

randn('state', 0);

rand('twister', 0);

[e, s, y] = garchsim(coeff, 1000);

3 Plot the results:

garchplot(e, s, y)

See Also garchfit, garchpred, garchsim

13-60



garchpred

Purpose Perform univariate GARCH process forecasting

Syntax [SigmaForecast,MeanForecast] = ...
garchpred(Spec,Series,NumPeriods)

[SigmaForecast,MeanForecast] = ...
garchpred(Spec,Series,NumPeriods,X,XF)

[SigmaForecast,MeanForecast,SigmaTotal,MeanRMSE] = ...
garchpred(Spec,Series,Numperiods)

Description garchpred forecasts the conditional mean of the univariate return
series and the standard deviation of the innovations NumPeriods into
the future. It uses specifications for the conditional mean and variance
of an observed univariate return series as input. garchpred also
computes volatility forecasts of asset returns over multiperiod holding
intervals, and the standard errors of conditional mean forecasts. The
conditional mean is of general ARMAX form and the conditional
variance can be of GARCH, EGARCH, or GJR form. (See “Conditional
Mean and Variance Models” on page 2-7.)

• [SigmaForecast,MeanForecast] = ...
garchpred(Spec,Series,NumPeriods) uses the conditional mean

and variance specifications defined in Spec to forecast the conditional
mean, MeanForecast, of the univariate return series and the
standard deviation, SigmaForecast, of the innovations NumPeriods
into the future. The NumPeriods default is 1.

• [SigmaForecast,MeanForecast] = ...
garchpred(Spec,Series,NumPeriods,X,XF) includes the

time-series regression matrix of observed explanatory data X and the
time-series regression matrix of forecasted explanatory data XF in
the calculation of MeanForecast.

For MeanForecast, if you specify X, you must also specify XF.
Typically, X is the same regression matrix of observed returns, if any,
that you used for simulation (garchsim) or estimation (garchfit).

• [SigmaForecast,MeanForecast,SigmaTotal,MeanRMSE] = ...
garchpred(Spec,Series,Numperiods) also computes the

13-61



garchpred

volatility forecasts, SigmaTotal, of the cumulative returns for
assets held for multiple periods, and the standard errors MeanRMSE
associated with MeanForecast.

Input
Arguments

Spec Specification structure for the conditional mean
and variance models. You can create Spec using
the function garchset or the estimation function
garchfit.

Series Matrix of observations of the underlying univariate
return series of interest for which garchpred
generates forecasts. Each column of Series is an
independent realization (path). The last row of
Series holds the most recent observation of each
realization. garchpred treats those observations
as valid that are below the most recent NaN in any
column.

garchpred assumes that Series is a stationary
stochastic process. It also assumes that the ARMA
component of the conditional mean model (if any) is
stationary and invertible.

NumPeriods Positive scalar integer representing the forecast
horizon of interest. You specify NumPeriods in
periods. It should be compatible with the sampling
frequency of Series. If NumPeriods = [] or is
unspecified, the default is 1.

13-62



garchpred

X Time-series regression matrix of observed
explanatory data that represents the past history
of the explanatory data. Typically, X is a regression
matrix of asset returns, for example, the return series
of an equity index. Each column of X is an individual
time series used as an explanatory variable in the
regression component of the conditional mean.
In each column, the first row contains the oldest
observation and the last row the most recent.

The most recent number of valid (non-NaN)
observations in each column of X must equal or
exceed the most recent number of valid observations
in Series. If the number of valid observations in a
column of X exceeds that of Series, garchpred uses
only the most recent observations of X.

If X is [] or is unspecified, the conditional mean has
no regression component.

XF Time-series matrix of forecasted explanatory data.
XF represents the evolution into the future of the
same explanatory data found in X. Because of this,
XF and X must have the same number of columns.
In each column of XF, the first row contains the
one-period-ahead forecast, the second row contains
the two-period-ahead forecast, and so on.

The number of rows (forecasts) in each column (time
series) of XF must equal or exceed the forecast horizon
NumPeriods. When the number of forecasts in XF
exceeds NumPeriods, garchpred uses only the first
NumPeriods forecasts.

If XF is [] or is unspecified, the conditional
mean forecast (MeanForecast) has no regression
component.

13-63



garchpred

Output
Arguments

SigmaForecast Matrix of conditional standard deviations of
future innovations (model residuals) on a per
period basis. The standard deviations derive
from the minimum mean square error (MMSE)
forecasts associated with the recursive volatility
model, for example, 'GARCH', 'GJR', or 'EGARCH',
specified for the 'VarianceModel' parameter in
Spec. For GARCH(P,Q) and GJR(P,Q) models,
SigmaForecast is the square root of the MMSE
conditional variance forecasts. For EGARCH(P,Q)
models, SigmaForecast is the square root of the
exponential of the MMSE forecasts of the logarithm
of conditional variance.

SigmaForecast has NumPeriods rows and the
same number of columns as Series. The first
row contains the standard deviation in the first
period for each realization of Series, the second
row contains the standard deviation in the second
period, and so on. If you specify a forecast horizon
greater than 1 (NumPeriods > 1), garchpred
returns the per-period standard deviations of all
intermediate horizons as well. In this case, the last
row contains the standard deviation at the specified
forecast horizon.

MeanForecast Matrix of MMSE forecasts of the conditional mean
of Series on a per-period basis. MeanForecast is
the same size as SigmaForecast. The first row
contains the forecast in the first period for each
realization of Series, the second row contains the
forecast in the second period, and so on.

Both X and XF must be nonempty for MeanForecast
to have a regression component. If X and XF are
empty ([]) or is unspecified, MeanForecast is

13-64



garchpred

based on an ARMA model. If you specify X and XF,
MeanForecast is based on the full ARMAX model.

SigmaTotal Matrix of MMSE volatility forecasts of Series over
multiperiod holding intervals. SigmaTotal is the
same size as SigmaForecast. The first row contains
the standard deviation of returns expected for assets
held for one period for each realization of Series,
the second row contains the standard deviation of
returns expected for assets held for two periods, and
so on. The last row contains the standard deviations
of the cumulative returns obtained if an asset was
held for the entire NumPeriods forecast horizon.

If you specify X or XF, SigmaTotal is [].

MeanRMSE Matrix of root mean square errors (RMSE)
associated with MeanForecast. That is, MeanRMSE
is the conditional standard deviation of the forecast
errors (the standard error of the forecast) of the
corresponding MeanForecast matrix. MeanRMSE
is the same size as MeanForecast. garchpred
organizes MeanRMSE the same way if the conditional
mean is modeled as a stationary/invertible ARMA
process.

If you specify X or XF, MeanRMSE is [].

Note garchpred calls the function garchinfer to access the past
history of innovations and conditional standard deviations inferred
from Series. If you need the innovations and conditional standard
deviations, call garchinfer directly.

Notes EGARCH(P,Q) models represent the logarithm of the conditional
variance as the output of a linear filter. As such, the minimum mean

13-65



garchpred

square error forecasts derived from EGARCH(P,Q) models are optimal
for the logarithm of the conditional variance. They are, however,
generally downward-biased forecasts of the conditional variance process
itself. The output arrays SigmaForecast, SigmaTotal, and MeanRMSE
are based upon the conditional variance forecasts. Thus, these outputs
generally underestimate their true expected values for conditional
variances derived from EGARCH(P,Q) models. The important exception
is the one-period-ahead forecast, which is unbiased in all cases.

Examples • “Examples: Computing Forecasts” on page 7-9

• “Forecasting” on page 11-5

See Also garchfit, garchinfer, garchma, garchset, garchsim

References Baillie, R.T., and T. Bollerslev, “Prediction in Dynamic Models with
Time-Dependent Conditional Variances,” Journal of GARCH, Vol. 52,
1992, pp 91-113.

Bollerslev, T., “Generalized Autoregressive Conditional
Heteroskedasticity,” Journal of GARCH, Vol. 31, 1986, pp 307-327.

Bollerslev, T., “A Conditionally Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return,” The Review Economics and
Statistics, Vol. 69, 1987, pp 542-547.

Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

Enders, W., Applied Econometric Time Series, John Wiley & Sons, 1995.

Engle, Robert, “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica,
Vol. 50, 1982, pp 987-1007.

Engle, R.F., D.M. Lilien, and R.P. Robins, “Estimating Time
Varying Risk Premia in the Term Structure: The ARCH-M Model,”
Econometrica, Vol. 59, 1987, pp 391-407.

13-66



garchpred

Glosten, L.R., R. Jagannathan, and D.E. Runkle, “On the Relation
Between Expected Value and the Volatility of the Nominal Excess
Return on Stocks,” Journal of Finance, Vol.48, 1993, pp 1779-1801.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

Nelson, D.B., “Conditional Heteroskedasticity in Asset Returns: A New
Approach,” Econometrica, Vol. 59, 1991, pp 347-370.

13-67



garchset

Purpose Create or modify GARCH specification structure

Syntax Spec = garchset(param1,val1,param2,val2,...)
Spec = garchset(OldSpec, param1,val1,...)
Spec = garchset
garchset

Description • Spec = garchset(param1,val1,param2,val2,...) creates a
GARCH model specification structure Spec using the parameter-value
pairs specified in the input argument list. Use garchget to retrieve
the values of specification structure parameters.

• Spec = garchset(OldSpec, param1,val1,...) modifies an
existing GARCH specification structure OldSpec by changing the
named parameters to the specified values. garchset returns an error
if the new parameter values would create an invalid model.

• Spec = garchset creates a GARCH specification structure Spec
for the GARCH Toolbox™ default model. The conditional mean
equation for this model is a simple constant plus additive noise. The
conditional variance equation of the additive noise is a GARCH(1,1)
model.

You can use this Spec as input to garchfit, but you cannot use it as
input to garchinfer, garchpred, or garchsim.

• garchset (with no input arguments and no output arguments)
displays all parameter names (and their default values, where
appropriate).

13-68



garchset

Input
Arguments

param1,
param2,
...

String representing a valid parameter field of
the output structure Spec. “Parameters” on page
13-69 lists the valid parameters and describes their
allowed values. A parameter name needs to include
only sufficient leading characters to uniquely
identify the parameter. Parameter names are case
insensitive.

val1,
val2, ...

Value assigned to the corresponding parameter.

OldSpec Existing GARCH specification structure as
generated by garchset or garchfit.

Output
Arguments

Spec GARCH specification structure containing the style, orders,
and coefficients (if specified) of the conditional mean and
variance specifications of a GARCH model. It also contains
the parameters associated with the Optimization Toolbox™
fmincon function.

Parameters A GARCH specification structure includes these parameters. Except
as noted, garchset sets all parameters you do not specify to their
respective defaults.

• “General Parameters” on page 13-70

• “Conditional Mean Parameters” on page 13-70

• “Conditional Variance Parameters” on page 13-71

• “Equality Constraint Parameters” on page 13-72

• “Optimization Parameters” on page 13-73

13-69



garchset

General Parameters

Parameter Value Description

Comment String.
Default is a model
summary.

User-defined summary
comment. An example
of the default is 'Mean:
ARMAX(0, 0, ?);
Variance: GARCH(1,
1)'.

Distribution 'T' or 'Gaussian'.
Default is 'Gaussian'.

Conditional
distribution of
innovations.

DoF Scalar. Default = []. Degrees of freedom
parameter for t
distributions (must
be > 2).

Conditional Mean Parameters

If you specify coefficient vectors AR and MA, but not their corresponding
model orders R and M, garchset infers the values of the model orders
from the lengths of the coefficient vectors.

Parameter Value Description

R Nonnegative integer
scalar. Default is 0.

Autoregressive model order of
an ARMA(R,M) model.

M Nonnegative integer
scalar. Default is 0.

Moving-average model order of
an ARMA(R,M) model.

C Scalar coefficient.
Default is [].

Conditional mean constant. If
C = NaN, garchfit ignores C,
effectively fixing C = 0, without
requiring initial estimates for
the remaining parameters.

13-70



garchset

Parameter Value Description

AR R-element vector.
Default is [].

Conditional mean
autoregressive coefficients that
imply a stationary polynomial.

MA M-element vector.
Default is [].

Conditional mean
moving-average coefficients that
imply an invertible polynomial.

Regress Vector of coefficients.
Default is [].

Conditional mean regression
coefficients.

Conditional Variance Parameters

If you specify coefficient vectors GARCH and ARCH, but not their
corresponding model orders P and Q, garchset infers the values of the
model orders from the lengths of the coefficient vectors.

Parameter Value Description

VarianceModel 'GARCH', 'EGARCH',
'GJR', or 'Constant'.
Default is 'GARCH'.

Conditional variance
model.

P Nonnegative integer
scalar. P must be 0 if Q
is 0. Default is 0.

Model order of
GARCH(P,Q),
EGARCH(P,Q), and
GJR(P,Q) models.

Q Nonnegative integer
scalar. Default is 0.

Model order of
GARCH(P,Q),
EGARCH(P,Q), and
GJR(P,Q) models.

K Scalar coefficient.
Default is [].

Conditional variance
constant.

13-71



garchset

Parameter Value Description

GARCH P-element vector.
Default is [].

Coefficients related
to lagged conditional
variances.

ARCH Q-element vector.
Default is [].

Coefficients related
to lagged innovations
(residuals).

Leverage Q-element vector.
Default is [].

Leverage coefficients
for asymmetric
EGARCH(P,Q) and
GJR(P,Q) models.

Equality Constraint Parameters

The garchfit function uses these parameters only during estimation.
Use these parameters cautiously. The problem can experience difficulty
converging if the fixed value is not well-suited to the data at hand.

Parameter Value Description

FixDoF Logical scalar.
Default is [].

Equality constraint
indicator for DoF
parameter.

FixC Logical scalar.
Default is [].

Equality constraint
indicator for C constant.

FixAR R-element logical vector.
Default is [].

Equality constraint
indicator for AR
coefficients.

FixMA M-element logical vector.
Default is [].

Equality constraint
indicator for MA
coefficients.

13-72



garchset

Parameter Value Description

FixRegress Logical vector.
Default is [].

Equality constraint
indicator for the
REGRESS coefficients.

FixK Logical scalar.
Default is [].

Equality constraint
indicator for the K
constant.

FixGARCH P-element logical vector.
Default is [].

Equality constraint
indicator for the GARCH
coefficients.

FixARCH Q-element logical vector.
Default is [].

Equality constraint
indicator for the ARCH
coefficients.

FixLeverage Q-element logical vector.
Default is [].

Equality constraint
indicator for Leverage
coefficients.

Optimization Parameters

garchfit uses the following parameters when calling the Optimization
Toolbox fmincon function during estimation.

Parameter Value Description

Display 'on' or 'off'.
Default is 'on'.

Display iterative
optimization
information.

MaxFunEvals Positive integer.
Default = (100*number
of estimated
parameters).

Maximum number
of objective function
evaluations allowed.

MaxIter Positive integer.
Default is 400.

Maximum number of
iterations allowed.

13-73



garchset

Parameter Value Description

TolCon Positive scalar.
Default is 1e-007.

Termination tolerance
on the constraint
violation.

TolFun Positive scalar.
Default is 1e-006.

Termination tolerance
on the objective function
value.

TolX Positive scalar.
Default is 1e-006.

Termination tolerance
on parameter estimates.

Examples 1 Create a GARCH(1,1) model:

spec = garchset('P', 1, 'Q', 1)
spec =

Comment: 'Mean: ARMAX(0, 0, ?);
Variance: GARCH(1, 1)'

Distribution: 'Gaussian'
C: []

VarianceModel: 'GARCH'
P: 1
Q: 1
K: []

GARCH: []
ARCH: []

2 Change the model to a GARCH(1,2) model:

spec = garchset(spec, 'Q', 2)

spec =

Comment: 'Mean: ARMAX(0, 0, ?); Variance: GARCH(1, 2)'

Distribution: 'Gaussian'

C: []

VarianceModel: 'GARCH'

P: 1

13-74



garchset

Q: 2

K: []

GARCH: []

ARCH: []

In each case, garchset displays the relevant fields in the specification
structure.

Tip Use garchget to retrieve the values of individual fields.

See Also garchfit, garchget, garchpred, garchsim

fmincon (Optimization Toolbox function)

13-75



garchsim

Purpose Perform univariate GARCH process simulation

Syntax [Innovations,Sigmas,Series] = garchsim(Spec)
[...] = garchsim(Spec,NumSamples,NumPaths)
[...] = garchsim(Spec,NumSamples,NumPaths, State)
[...] = garchsim(Spec,NumSamples,NumPaths,State,X)
[...] = garchsim(Spec,NumSamples,NumPaths,State,X,Tolerance)
[...] = garchsim(Spec,NumSamples,NumPaths,State,X,Tolerance, ...)
PreInnovations,PreSigmas,PreSeries)

Description • [Innovations,Sigmas,Series] = garchsim(Spec), given
specifications for the conditional mean and variance of a univariate
time series, simulates a sample path with 100 observations for
the return series, innovations, and conditional standard deviation
processes. The conditional mean can be of general ARMA form and
the conditional variance of general GARCH, EGARCH, or GJR form.

• [...] = garchsim(Spec,NumSamples,NumPaths) simulates
NumPaths sample paths. Each path is sampled at NumSamples
observations.

• [...] = garchsim(Spec,NumSamples,NumPaths, State) specifies
the State time-series matrix of the standardized (zero mean, unit
variance), independent, identically distributed random noise process.

• [...] = garchsim(Spec,NumSamples,NumPaths,State,X) accepts
a time-series regression matrix X of observed explanatory data.
garchsim treats each column of X as an individual time series, and
uses it as an explanatory variable in the regression component of the
conditional mean.

• [...] =
garchsim(Spec,NumSamples,NumPaths,State,X,Tolerance)
accepts a scalar transient response tolerance, such that 0 <
Tolerance ≤ 1. garchsim estimates the number of observations
needed for the magnitude of the impulse response, which begins at 1,
to decay below the Tolerance value. The number of observations
associated with the transient decay period is subject to a maximum
of 10,000 to prevent out-of-memory conditions. When you specify

13-76



garchsim

presample observations (PreInnovations, PreSigmas, and
PreSeries), garchsim ignores the value of Tolerance.

Use Tolerance to manage the conflict between transient
minimization and memory usage. Smaller Tolerance values
generate output processes that more closely approximate true
steady-state behavior, but require more memory for the additional
filtering required. Conversely, larger Tolerance values require less
memory, but produce outputs in which transients tend to persist.

If you do not explicitly specify presample data (see below), the
impulse response estimates are based on the magnitude of the largest
eigenvalue of the autoregressive polynomial.

• [...] =
garchsim(Spec,NumSamples,NumPaths,State,X,Tolerance, ...)
PreInnovations,PreSigmas,PreSeries) uses presample

observations, contained in the time-series matrices or column vectors
PreInnovations, PreSigmas, and PreSeries, to simulate the
outputs Innovations, Sigmas, and Series, respectively. When
specified, garchsim uses these presample arrays to initiate the
filtering process, and thus form the conditioning set upon which the
simulated realizations are based.

If you specify the presample data as matrices, they must have NumPaths
columns. garchsim uses the presample information from a given
column to initiate the simulation of the corresponding column of the
Innovations, Sigmas, and Series outputs. If you specify the presample
data as column vectors, garchsim applies the vectors to each column of
the corresponding Innovations, Sigmas, and Series outputs.

If you provide no explicit presample data, garchsim automatically
derives the necessary presample observations, as described in
“Automatically Minimizing Transient Effects” on page 4-7.

PreInnovations and PreSigmas are usually companion inputs.
Although both are optional, when specified, they are typically entered
together. A notable exception would be a GARCH(0,Q) (that is, an
ARCH(Q)) model in which the conditional variance equation does not

13-77



garchsim

require lagged conditional variance forecasts. Similarly, PreSeries is
only necessary when you want to simulate the output return Series,
and when the conditional mean equation has an autoregressive
component.

If the conditional mean or the conditional variance equation
(“Conditional Mean and Variance Models” on page 2-7) is not recursive,
then certain presample information is not needed to jump-start the
models. However, specifying redundant presample information is not
an error, and garchsim ignores presample observations you specify for
models that require no such information.

Input
Arguments

Spec GARCH specification structure for the
conditional mean and variance models. You
create Spec by calling the function garchset
or the estimation function garchfit. The
conditional mean can be of general ARMAX
form and the conditional variance of general
GARCH form.

NumSamples (optional) Positive integer indicating the
number of observations garchsim generates
for each path of the Innovations, Sigmas, and
Series outputs. If NumSamples = [] or is
unspecified, the default is 100.

NumPaths (Optional) Positive integer indicating the
number of sample paths (realizations)
garchsim generates for the Innovations,
Sigmas, and Series outputs. If NumPaths = []
or is unspecified, the default is 1; that is,
Innovations, Sigmas and Series are column
vectors.

13-78



garchsim

PreInnovations Time-series matrix or column vector of
presample innovations on which the recursive
mean and variance models are conditioned.
This array can have any number of rows,
provided it contains sufficient observations to
initialize the mean and variance equations.
That is, if M and Q are the number of lagged
innovations required by the conditional mean
and variance equations, respectively, then
PreInnovations must have at least max(M,Q)
rows.

If the number of rows exceeds max(M,Q), then
garchsim uses only the last (most recent)
max(M,Q) rows. If PreInnovations is a matrix,
then it must have NumPaths columns.

PreSigmas Time-series matrix or column vector of
positive presample conditional standard
deviations on which the recursive variance
model is conditioned. This array can have any
number of rows, provided it contains sufficient
observations to initialize the conditional
variance equation. That is, if P and Q are
the number of lagged conditional standard
deviations and lagged innovations required by
the conditional variance equation, respectively,
then PreSigmas must have at least P rows
for GARCH and GJR models, and at least
max(P,Q) rows for EGARCH models.

If the number of rows exceeds the requirement,
then garchsim uses only the last (most recent)
rows. If PreSigmas is a matrix, then it must
have NumPaths columns.

13-79



garchsim

PreSeries Time-series matrix or column vector of
presample observations of the return series of
interest on which the recursive mean model
is conditioned. This array can have any
number of rows, provided it contains sufficient
observations to initialize the conditional mean
equation. Thus, if R is the number of lagged
observations of the return series required by
the conditional mean equation, then PreSeries
must have at least R rows. If the number of
rows exceeds R, then garchsim uses only the
last (most recent) R rows. If PreSeries is a
matrix, then it must have NumPaths columns.

State Time series matrix of standardized (mean
zero, unit variance), independent, identically
distributed disturbances that drive the
output Innovations time series process.
When specified, State must have NumPaths
columns and at least NumSamples rows. The
first row contains the oldest observation
and the last row the most recent. garchsim
automatically generates additional presample
observations required to minimize transients,
if any, based on the distribution found in the
input specification structure Spec. garchsim
then prepends these to the input State time
series matrix. If State has more observations
(rows) than necessary, then garchsim uses
only the most recent observations. If State
is empty or missing, garchsim automatically
generates a noise process of appropriate size
and distribution.

13-80



garchsim

Tolerance Scalar transient response tolerance, such that
0 < Tolerance ≤ 1. garchsim ignores this
tolerance parameter if you specify presample
conditioning information (PreInnovations,
PreSigmas, and PreSeries). If Tolerance is
empty or missing, the default is 0.01 (1%).

X Time-series regression matrix of observed
explanatory data. Typically, X is a matrix
of asset returns (for example, the return
series of an equity index), and represents the
past history of the explanatory data. Each
column of X is an individual time series used
as an explanatory variable in the regression
component of the conditional mean. In each
column, the first row contains the oldest
observation and the last row the most recent.

If X = [] or is unspecified, the conditional
mean has no regression component. If
specified, then at least the most recent
NumSamples observations of each return series
must be valid (non-NaN). When the number
of valid observations in each series exceeds
NumSamples, garchsim uses only the most
recent NumSamples observations of X.

13-81



garchsim

Output
Arguments

Innovations NumSamples by NumPaths matrix of innovations,
representing a mean zero, discrete-time stochastic
process. The Innovations time series follows the
conditional variance specification defined in Spec.
Rows are sequential observations, columns are
realizations.

Sigmas NumSamples by NumPaths matrix of conditional
standard deviations of the corresponding
Innovations matrix. Innovations and Sigmas are
the same size. Rows are sequential observations.
Columns are realizations.

Series NumSamples by NumPaths matrix of the return
series of interest. Series is the dependent
stochastic process and follows the conditional mean
specification of general ARMAX form defined in
Spec. Rows are sequential observations. Columns
are realizations.

Examples State as a Standardized Noise Matrix

1 When State is specified, it represents a user-defined time-series
matrix of standardized (mean zero, unit variance), i.i.d. disturbances
{z(t)} that drive the output time-series processes {e(t)}, {s(t)},
and {y(t)}.

For example, if you run garchsim once, then standardize the
simulated residuals and pass them into garchsim as the i.i.d. state
noise input for a second run, the standardized residuals from both
runs will be identical. This verifies that the specified input state noise
matrix is indeed the "in-sample" i.i.d. noise process {z(t)} for both:

spec = garchset('C', 0.0001, 'K', 0.00005, ...
'GARCH', 0.8, 'ARCH', 0.1);

13-82



garchsim

[e1, s1, y1] = garchsim(spec, 100, 1);
z1 = e1./s1; % Standardize residuals
[e2, s2, y2] = garchsim(spec, 100, 1, z1);
z2 = e2./s2; % Standardize residuals

In this case, z1 = z2. However, although the “in-sample” standardized
noise processes are identical, in the absence of presample data the
simulated output processes {e(t)}, {s(t)}, and {y(t)} differ. This
is because additional standardized noise observations necessary
to minimize transients must be simulated from the distribution,
'Gaussian' or 'T', found in the specification structure.

2 Specify all required presample data and repeat the experiment:

[e3,s3,y3] = garchsim(spec,100,1,[],[],[],...
0.02,0.06);
z3 = e3./s3; % Standardize residuals
[e4,s4,y4] = garchsim(spec,100,1,z3,...
[],[],0.02,0.06);
z4 = e4./s4; % Standardize residuals

In this case, e3 = e4, s3 = s4, y3 = y4 and z3 = z4.

More Examples

• “Simulating Single and Multiple Paths” on page 4-2

• “Fitting a Model to a Simulated Return Series” on page 8-3

• “Forecasting Using Monte Carlo Simulation” on page 11-7

• “Market Risk Using GARCH, Bootstrapping and Filtered Historical
Simulation”

• “Market Risk Using GARCH, Extreme Value Theory, and Copulas”

See Also garchfit, garchget, garchpred, garchset

rand, randn (MATLAB® function)

13-83

file:///B:/matlab/doc/src/toolbox/garch/garchdemos/html/garchfhsdemo.html
file:///B:/matlab/doc/src/toolbox/garch/garchdemos/html/garchfhsdemo.html
file:///B:/matlab/doc/src/toolbox/garch/garchdemos/html/garchcopulaevtdemo.html


garchsim

References Bollerslev, T., “A Conditionally Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return,” Review of Economics and
Statistics, Vol. 69, 1987, pp 542-547.

Bollerslev, T., “Generalized Autoregressive Conditional
Heteroskedasticity,” Journal of GARCH, Vol. 31, 1986, pp 307-327.

Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

Enders, W., Applied Econometric Time Series, John Wiley & Sons, 1995.

Engle, Robert, “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica,
Vol. 50, 1982, pp 987-1007.

Engle, R.F., D.M. Lilien, and R.P. Robins, “Estimating Time
Varying Risk Premia in the Term Structure: The ARCH-M Model,”
Econometrica, Vol. 59,1987, pp 391-407.

Glosten, L.R., R. Jagannathan, and D.E. Runkle, “On the Relation
Between Expected Value and the Volatility of the Nominal Excess
Return on Stocks,” The Journal of Finance, Vol.48, 1993, pp 1779-1801.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

Nelson, D.B., “Conditional Heteroskedasticity in Asset Returns: A New
Approach,” Econometrica, Vol. 59, 1991, pp 347-370.

13-84



hpfilter

Purpose Run Hodrick-Prescott filter

Syntax hpfilter(S)
hpfilter(S,smoothing)
T = hpfilter(...)
[T,C] = hpfilter(...)

Description • hpfilter(S) uses a Hodrick-Prescott filter and a default smoothing
parameter of 1600 to separate the columns of S into trend and cyclical
components. S is an m-by-n matrix with m samples from n time
series. A plot displays each time series together with its trend (the
time series with the cyclic component removed).

• hpfilter(S,smoothing) applies the smoothing parameter
smoothing to the columns of S. If smoothing is a scalar, hpfilter
applies it to all columns. If S has n columns and smoothing is a
conformable vector (n-by-1 or 1-by-n), hpfilter applies the vector
components of smoothing to the corresponding columns of S.

If the smoothing parameter is 0, no smoothing takes place. As
the smoothing parameter increases in value, the smoothed series
becomes more linear. A smoothing parameter of Inf produces a
linear trend component.

Appropriate values of the smoothing parameter depend upon the
periodicity of the data. The following reference suggests the following
values:

- Yearly — 100

- Quarterly — 1600

- Monthly — 14400

• T = hpfilter(...) returns the trend components of the columns of
S in T, without plotting.

• [T,C] = hpfilter(...) returns the cyclical components of the
columns of S in C, without plotting.

13-85



hpfilter

Remarks The Hodrick-Prescott filter separates a time series yt into a trend
component Tt and a cyclical component Ct such that yt = Tt + Ct. It is
equivalent to a cubic spline smoother, with the smoothed portion in Tt.

The objective function for the filter has the form

C T T T Tt
t

m

t t t t
t

m
2

1
1 1

2

2

1

=
+ −

=

−

∑ ∑+ − − −λ (( ) ( ))

where m is the number of samples and λ is the smoothing parameter.
The programming problem is to minimize the objective over all T1, ...
, Tm. The first sum minimizes the difference between the time series
and its trend component (which is its cyclical component). The second
sum minimizes the second-order difference of the trend component
(which is analogous to minimization of the second derivative of the
trend component).

Example Plot the cyclical component of the U.S. post-WWII seasonally-adjusted
real GNP:

load gnp
gnpdate = gnp(:,1);
realgnp = gnp(:,3);
[T,C] = hpfilter(realgnp);
Warning: Missing or empty Smoothing parameter set to 1600.
plot(gnpdate,C)

13-86



hpfilter

Reference [1] Robert J. Hodrick and Edward C. Prescott, “Postwar U.S. Business
Cycles: An Empirical Investigation,” Journal of Money, Credit, and
Banking, Vol. 29, No. 1, February 1997, pp. 1-16.

13-87



lagmatrix

Purpose Create lagged time-series matrix

Syntax XLAG = lagmatrix(X,Lags)

Description XLAG = lagmatrix(X,Lags) creates a lagged (shifted) version of a
time-series matrix. The lagmatrix function is useful for creating a
regression matrix of explanatory variables for fitting the conditional
mean of a return series.

Input
Arguments

X Time-series of explanatory data. X can be a column vector
or a matrix. As a column vector, X represents a univariate
time series whose first element contains the oldest
observation and whose last element contains the most
recent observation. As a matrix, X represents a multivariate
time series whose rows correspond to time indices. The
first row contains the oldest observations and the last row
contains the most recent observations. lagmatrix assumes
that observations across any given row occur at the same
time. Each column is an individual time series.

Lags Vector of integer lags. lagmatrix applies the first lag to
every series in X, then applies the second lag to every series
in X, and so forth. To include a time series as is, include a
0 lag. Positive lags correspond to delays, and shift a series
back in time. Negative lags correspond to leads, and shift a
series forward in time.

13-88



lagmatrix

Output
Arguments

XLAG Lagged transform of the time series X. To create XLAG,
lagmatrix shifts each time series in X by the first lag, then
shifts each time series in X by the second lag, and so forth.
Since XLAG represents an explanatory regression matrix,
each column is an individual time series. XLAG has the
same number of rows as there are observations in X. Its
column dimension is equal to the product of the number of
columns in X and the length of Lags. lagmatrix uses a NaN
(Not-a-Number) to indicate an undefined observation.

Examples Example 1

1 Create a bivariate time-series matrix X with five observations each:

X = [1 -1; 2 -2 ;3 -3 ;4 -4 ;5 -5] % Create a simple
% bivariate series.

X =
1 -1
2 -2
3 -3
4 -4
5 -5

2 Create a lagged matrix XLAG, composed of X and the first two lags of X:

XLAG = lagmatrix(X,[0 1 2]) % Create the lagged matrix.
XLAG =

1 -1 NaN NaN NaN NaN
2 -2 1 -1 NaN NaN
3 -3 2 -2 1 -1
4 -4 3 -3 2 -2
5 -5 4 -4 3 -3

The result, XLAG, is a 5-by-6 matrix.

13-89



lagmatrix

Example 2

See “Fitting a Regression Model to the Same Return Series” on page 8-5.

See Also filter, isnan, and nan (MATLAB® functions)

13-90



lbqtest

Purpose Run Ljung-Box Q-statistic lack-of-fit hypothesis test

Syntax [H,pValue,Qstat,CriticalValue] = ...
lbqtest(Series,Lags,Alpha,DoF)

Description [H,pValue,Qstat,CriticalValue] = ...
lbqtest(Series,Lags,Alpha,DoF) performs the Ljung-Box

lack-of-fit hypothesis test for model misspecification, which is based on
the Q-statistic

Q N N
r

N k
k

k

L
= +

−=
∑( )

( )
2

2

1

where N = sample size, L = the number of autocorrelation lags included

in the statistic, and rk
2

is the squared sample autocorrelation at lag k.

Once you fit a univariate model to an observed time series, you can use
the Q-statistic as a lack-of-fit test for a departure from randomness.
Under the null hypothesis that the model fit is adequate, the test
statistic is asymptotically chi-square distributed.

Input
Arguments

Series Vector of observations of a univariate time series for
which lbqtest computes the sample Q-statistic. The last
row of Series contains the most recent observation of the
stochastic sequence. Typically, Series is either:

• The sample residuals derived from fitting a model to
an observed time series, or

• The standardized residuals obtained by dividing
the sample residuals by the conditional standard
deviations.

Lags Vector of positive integers indicating the lags of
the sample autocorrelation function included in the

13-91



lbqtest

Q-statistic. If specified, each lag must be less than the
length of Series. If Lags = [] or is unspecified, the
default is Lags = min([20, length(Series)-1]).

Alpha Significance levels. Alpha can be a scalar applied to all
lags, or a vector the same length as Lags. If Alpha = []
or is unspecified, the default is 0.05. For all elements,
α, of Alpha,0 < α < 1.

DoF Degrees of freedom. DoF can be a scalar applied to all
lags, or a vector the same length as Lags. If specified,
all elements of DoF must be positive integers less than
the corresponding element of Lags. If DoF = [] or is
unspecified, the elements of Lags serve as the default
degrees of freedom for the chi-square distribution.

Output
Arguments

H Boolean decision vector. 0 indicates acceptance of
the null hypothesis that the model fit is adequate
(no serial correlation at the corresponding
element of Lags). 1 indicates rejection of the null
hypothesis. H is the same size as Lags.

pValue Vector of p-values (significance levels) at which
lbqtest rejects the null hypothesis of no serial
correlation at each lag in Lags.

Qstat Vector of Q-statistics for each lag in Lags.

CriticalValue Vector of critical values of the chi-square
distribution for comparison with the
corresponding element of Qstat.

Examples Example 1

1 Create a vector of 100 Gaussian random numbers:

13-92



lbqtest

randn('state', 100) % Start from a known state.
Series = randn(100, 1); % 100 Gaussian deviates ~ N(0, 1)

2 Compute the Q-statistic for autocorrelation lags 20 and 25 at the 10
percent significance level:

[H, P, Qstat, CV] = lbqtest(Series, [20 25]', 0.10);

[H, P, Qstat, CV]

ans =

0 0.9615 10.3416 28.4120

0 0.9857 12.1015 34.3816

Example 2

See “Pre-Estimation Analysis” on page 2-16.

See Also archtest, autocorr

References Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

Gourieroux, C., ARCH Models and Financial Applications,
Springer-Verlag, 1997.

13-93



lratiotest

Purpose Run Likelihood ratio hypothesis test

Syntax [H,pValue,Ratio,CriticalValue] = ...
lratiotest(BaseLLF,NullLLF,DoF,Alpha)

Description [H,pValue,Ratio,CriticalValue] = ...
lratiotest(BaseLLF,NullLLF,DoF,Alpha) performs the likelihood

ratio hypothesis test. lratiotest uses as input the optimized
log-likelihood objective function (LLF) value associated with an
unrestricted maximum likelihood parameter estimate, and the LLF
values associated with restricted parameter estimates.

The unrestricted LLF is the baseline case used to fit conditional mean
and variance specifications to an observed univariate return series.
The restricted models determine the null hypotheses of each test. The
number of restrictions they impose determines the degrees of freedom
of the resulting chi-square distribution.

BaseLLF is usually the LLF of a larger estimated model and serves as
the alternative hypothesis. Elements of NullLLF are then the LLFs
associated with smaller, restricted specifications. BaseLLF should
exceed the values in NullLLF. The asymptotic distribution of the test
statistic is chi-square distributed with degrees of freedom equal to the
number of restrictions.

Input
Arguments

BaseLLF Scalar value of the optimized log-likelihood objective
function of the baseline, unrestricted estimate.
lratiotest assumes BaseLLF is the output of the
estimation function garchfit or the inference function
garchinfer.

NullLLF Vector of optimized log-likelihood objective function
values of the restricted estimates. lratiotest assumes
that you obtained the NullLLF values using garchfit
or garchinfer.

13-94



lratiotest

DoF Degrees of freedom (number of parameter restrictions)
associated with each value in NullLLF. DoF can be a
scalar applied to all values in NullLLF, or a vector the
same length as NullLLF. All elements of DoF must be
positive integers.

Alpha Significance levels of the hypothesis test. Alpha can be
a scalar applied to all values in NullLLF, or a vector the
same length as NullLLF. If Alpha = [] or is unspecified,
the default is 0.05. For all elements, α, of Alpha,0 < α < 1.

Output
Arguments

H Vector of Boolean decisions the same size as
NullLLF. A 0 indicates acceptance of the restricted
model under the null hypothesis. 1 indicates
rejection of the restricted, null hypothesis model
relative to the unrestricted alternative associated
with BaseLLF.

pValue Vector of p-values (significance levels) at which
lratiotest rejects the null hypothesis of each
restricted model. pValue is the same size as
NullLLF.

Ratio Vector of likelihood ratio test statistics the same
size as NullLLF. The test statistic is

Ratio = 2(BaseLLF – NullLLF).

CriticalValue Vector of critical values of the chi-square
distribution. CriticalValue is the same size as
NullLLF.

Examples See “Likelihood Ratio Tests” on page 10-3 and “Equality Constraints
and Parameter Significance” on page 10-9.

13-95



lratiotest

See Also garchfit, garchinfer

References Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

13-96



parcorr

Purpose Plot or return computed sample partial autocorrelation function

Syntax parcorr(Series,nLags,R,nSTDs)
[PartialACF,Lags,Bounds] = ...
parcorr(Series,nLags,R,nSTDs)

Description • parcorr(Series,nLags,R,nSTDs) computes and plots the sample
partial autocorrelation function (partial ACF) of a univariate,
stochastic time series. parcorr computes the partial ACF by fitting
successive autoregressive models of orders 1, 2, ... by ordinary least
squares, retaining the last coefficient of each regression. To plot the
partial ACF sequence without the confidence bounds, set nSTDs = 0.

• [PartialACF,Lags,Bounds] = ...
parcorr(Series,nLags,R,nSTDs) computes and returns the

partial ACF sequence.

Input
Arguments

Series Vector of observations of a univariate time series for
which parcorr returns or plots the sample partial
autocorrelation function (partial ACF). The last element
of Series contains the most recent observation of the
stochastic sequence.

nLags Positive scalar integer indicating the number of lags of the
partial ACF to compute. If nLags = [] or is unspecified,
parcorr computes the partial ACF sequence at lags 0, 1,
2, ...,T , where T = min([20,length(Series)-1]).

13-97



parcorr

R Nonnegative integer scalar indicating the number of lags
beyond which parcorr assumes the theoretical partial
ACF is zero. Assuming that Series is an AR(R) process,
the estimated partial ACF coefficients at lags greater
than R are approximately zero-mean, independently
distributed Gaussian variates. In this case, the standard
error of the estimated partial ACF coefficients of a fitted

Series with N observations is approximately

1
N for

lags greater than R. If R = [] or is unspecified, the
default is 0. The value of R must be less than nLags.

nSTDs Positive scalar indicating the number of standard
deviations of the sample partial ACF estimation error
to display, assuming that Series is an AR(R) process.
If the Rth regression coefficient (the last ordinary least
squares (OLS) regression coefficient of Series regressed
on a constant and R of its lags) includes N observations,
specifying nSTDs results in confidence bounds at

±( )
nSTDs

N . If nSTDs = [] or is unspecified, the default is
2 (approximate 95 percent confidence interval).

Output
Arguments

PartialACF Sample partial ACF of Series. PartialACF is a
vector of length nLags + 1 corresponding to lags
0, 1, 2, ..., nLags. The first element of PartialACF is
unity, that is, PartialACF(1) = 1 = OLS regression

13-98



parcorr

coefficient of Series regressed upon itself. parcorr
includes this element as a reference.

Lags Vector of lags, of length nLags + 1. The elements
correspond to the elements of PartialACF.

Bounds Two-element vector indicating the approximate
upper and lower confidence bounds, assuming that
Series is an AR(R) process. Bounds is approximate
for lags greater than R only.

Examples Example 1

1 Create a stationary AR(2) process from a sequence of 1000 Gaussian
deviates:

randn('state', 0);
x = randn(1000, 1);
y = filter(1, [1 -0.6 0.08], x);
[PartialACF, Lags, Bounds] = parcorr(y, [], 2);
[Lags, PartialACF]
ans =

0 1.0000
1.0000 0.5570
2.0000 -0.0931
3.0000 0.0249
4.0000 -0.0180
5.0000 -0.0099
6.0000 0.0483
7.0000 0.0058
8.0000 0.0354
9.0000 0.0623

10.0000 0.0052
11.0000 -0.0109
12.0000 0.0421

13-99



parcorr

13.0000 -0.0086
14.0000 -0.0324
15.0000 0.0482
16.0000 0.0008
17.0000 -0.0192
18.0000 0.0348
19.0000 -0.0320
20.0000 0.0062

Bounds
Bounds =

0.0633
-0.0633

2 Visually assess whether the partial ACF is zero for lags greater
than 2:

parcorr(y, [], 2) % Use the same example, but plot

% the partial ACF sequence with

% confidence bounds.

13-100



parcorr

Example 2

See “Pre-Estimation Analysis” on page 2-16.

See Also autocorr, crosscorr

filter (MATLAB® function)

References Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, 1994.

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994.

13-101



ppARDTest

Purpose Run Phillips-Perron unit root test based on AR(1) model with drift

Syntax [H,pValue,TestStat,CriticalValue] = ...
ppARDTest(Y,Lags,Alpha,TestType)

Description [H,pValue,TestStat,CriticalValue] = ...
ppARDTest(Y,Lags,Alpha,TestType) performs a Phillips-Perron

univariate unit root test. This test assumes that the true underlying
process is a zero drift unit root process. As an alternative, OLS
regression estimates a first-order autoregressive (AR(1)) model plus
additive constant.

Specifically, consider yt and ε t to be the time series of observed
data and model residuals, respectively. In this case, under the null
hypothesis,ppARDTest assumes the true underlying process is

y yt t t= +−1 ε

As an alternative, the estimated OLS regression model is

y C yt t t= + +−φ ε1

for some constant C and AR(1) coefficient φ < 1.

Input
Arguments

Y Time-series vector of observed data tested for a unit
root. The last element contains the most recent
observation. ppARDTest represents missing values as
NaNs and removes them, thereby reducing the sample
size.

Lags (Optional) Scalar or vector of nonnegative integers.
This parameter indicates the number of autocovariance
lags included in the Newey-West estimation of the
asymptotic variance of the sample mean of the
residuals. Lags serves as a correction for serial

13-102



ppARDTest

correlation of residuals. If empty or missing, the default
is 0 (no correction for serial correlation).

Alpha (Optional) Scalar or vector of significance levels of
the test. All elements of the input argument must be
0.001 ≤ Alpha ≤ 0.999.

TestType (Optional) Character string indicating the type of unit
root test. Possible choices are t and AR, indicating
an OLS t test of the AR coefficient and a test of the
unstudentized AR coefficient, respectively. ppARDTest
performs a case-insensitive check of TestType. If it is
empty or missing, the default is a t test.

Output
Arguments

H Logical decision vector. Elements of H = 0
indicate acceptance of the null hypothesis;
elements of H = 1 indicate rejection of the null
hypothesis. Each element of H is associated with
a particular lag of Lags and significance level of
Alpha.

pValue Vector of p-values (significance levels) associated
with the test decision vector H. Each element of
pValue represents the probability of observing
a test statistic at least as extreme as that
calculated from the OLS regression model when
the null hypothesis is true. ppARDTest obtains
p-values by interpolation into the appropriate
table of critical values.

When a p-value is outside of the range of
tabulated significance levels (0.001 <= Alpha
<=0.999), a warning appears. ppARDTest then
sets pValue to the appropriate limit (pValue =
0.001 or 0.999).

13-103



ppARDTest

TestStat Vector of test statistics associated with the
decision vector H.

CriticalValue Vector of critical values associated with the
decision vector H.

Notes You can specify both Lags and Alpha as scalars or vectors. If you specify
both as vectors, they must be the same length (that is, they must have
the same number of elements). If you specify one as a scalar and the
other as a vector, ppARDTest performs a scalar expansion to enforce
vectors of identical length. If Lags is a scalar or an empty matrix, by
default, all outputs are column vectors.

All vector outputs are the same length as vector inputs Alpha and/or
Lags. By default all vector outputs are column vectors. If Lags is a row
vector, however, all vector outputs are row vectors.

This univariate unit root test is a conventional lower-tailed test.
ppARDTest compares the test statistic with the critical value to
determine whether the test is accepted or rejected. If the test statistic is
less than the critical value, then reject the null hypothesis.

See Also dfARDTest, dfARTest, dfTSTest, ppARTest, ppTSTest

References Hamilton, J.D., Time Series Analysis, Princeton University Press,
Princeton, NJ, 1994.

Greene, W.H., Econometric Analysis, Prentice Hall, Fifth edition, Upper
Saddle River, NJ, 2003.

Enders, W., Applied Econometric Time Series, John Wiley & Sons, New
York, 1995.

Campbell, J.Y., A.W. Lo, and A.C. MacKinlay, The GARCH of Financial
Markets, Princeton University Press, Princeton, NJ, 1997.

13-104



ppARTest

Purpose Run Phillips-Perron unit root test based on zero drift AR(1) model

Syntax [H,pValue,TestStat,CriticalValue] = ...
ppARTest(Y,Lags,Alpha,TestType)

Description [H,pValue,TestStat,CriticalValue] = ...
ppARTest(Y,Lags,Alpha,TestType) performs a Phillips-Perron

univariate unit root test. This test assumes that the true underlying
process is a zero drift unit root process. As an alternative, OLS
regression estimates a zero drift first-order autoregressive (AR(1))
model.

Specifically, consider yt and ε t to be the time series of observed data and
model residuals, respectively. Then under the null hypothesis, ppARTest
assumes that the true underlying process is

y yt t t= +−1 ε

As an alternative, the estimated OLS regression model is

y yt t t= +−φ ε1

for some AR(1) coefficient φ < 1.

Input
Arguments

Y Time-series vector of observed data tested for a unit
root. The last element contains the most recent
observation. ppARTest represents missing values as
NaNs and removes them, thereby reducing the sample
size.

Lags (Optional) Scalar or vector of nonnegative integers.
This parameter indicates the number of autocovariance
lags included in the Newey-West estimation of the
asymptotic variance of the sample mean of the
residuals. Lags serves as a correction for serial

13-105



ppARTest

correlation of residuals. If empty or missing, the default
is 0 (no correction for serial correlation).

Alpha (Optional) Scalar or vector of significance levels of
the test. All elements of the input argument must be
0.001 ≤ Alpha ≤ 0.999.

TestType (Optional) Character string indicating the type of unit
root test. Possible choices are t and AR, indicating
an OLS t test of the AR coefficient and a test of the
unstudentized AR coefficient, respectively. ppARTest
performs a case-insensitive check of TestType. If it is
empty or missing, the default is a t test. .

Output
Arguments

H Logical decision vector. Elements of H = 0
indicate acceptance of the null hypothesis;
elements of H = 1 indicate rejection of the null
hypothesis. Each element of H is associated with
a particular lag of Lags and significance level of
Alpha.

pValue Vector of p-values (significance levels) associated
with the test decision vector H. Each element of
pValue represents the probability of observing
a test statistic at least as extreme as that
calculated from the OLS regression model when
the null hypothesis is true. ppARTest obtains
p-values by interpolation into the appropriate
table of critical values.

When a p-value is outside of the range of
tabulated significance levels (0.001 <= Alpha
<=0.999), a warning appears. ppARTest then
sets pValue to the appropriate limit (pValue =
0.001 or 0.999).

13-106



ppARTest

TestStat Vector of test statistics associated with the
decision vector H.

CriticalValue Vector of critical values associated with the
decision vector H.

Notes You can specify both Lags and Alpha as scalars or vectors. If you specify
both as vectors, they must be the same length (that is, they must have
the same number of elements). If you specify one as a scalar and the
other as a vector, ppARTest performs a scalar expansion to enforce
vectors of identical length. If Lags is a scalar or an empty matrix, by
default, all outputs are column vectors.

All vector outputs are the same length as vector inputs Alpha and/or
Lags. By default, all vector outputs are column vectors. If Lags is a row
vector, however, all vector outputs are row vectors.

This univariate unit root test is a conventional lower-tailed test.
ppARTest compares the test statistic with the critical value to determine
whether the test is accepted or rejected. If the test statistic is less than
the critical value, reject the null hypothesis.

See Also dfARDTest, dfARTest, dfTSTest, ppARDTest, ppTSTest

References Hamilton, J.D., Time Series Analysis, Princeton University Press,
Princeton, NJ, 1994.

Greene, W.H., Econometric Analysis, Prentice Hall, Fifth edition, Upper
Saddle River, NJ, 2003.

Enders, W., Applied Econometric Time Series, John Wiley & Sons, New
York, 1995.

Campbell, J.Y., A.W. Lo, and A.C. MacKinlay, The GARCH of Financial
Markets, Princeton University Press, Princeton, NJ, 1997.

13-107



ppTSTest

Purpose Run Phillips-Perron unit root test based on trend stationary AR(1)
model

Syntax [H,pValue,TestStat,CriticalValue] = ...
ppTSTest(Y,Lags,Alpha,TestType)

Description [H,pValue,TestStat,CriticalValue] = ...
ppTSTest(Y,Lags,Alpha,TestType) performs a Phillips-Perron

univariate unit root test. This test assumes that the true underlying
process is a unit root process with drift. As an alternative, OLS
regression estimates a trend stationary first-order autoregressive
(AR(1)) model plus additive constant.

Specifically, consider yt and ε t to be the time series of observed data and
model residuals, respectively. Then under the null hypothesis, ppTSTest
assumes that the true underlying process is

y C yt t t= + +−1 ε

for an arbitrary constant C. As an alternative, the estimated OLS
regression model is

y C y tt t t= + + +−φ δ ε1

for some constant C, AR(1) coefficient φ < 1, and trend stationary
coefficient δ.

13-108



ppTSTest

Input
Arguments

Y Time-series vector of observed data tested for a unit
root. The last element contains the most recent
observation. ppTSTest represents missing values as
NaNs and removes them, thereby reducing the sample
size.

Lags (Optional) Scalar or vector of nonnegative integers.
This parameter indicates the number of autocovariance
lags included in the Newey-West estimation of the
asymptotic variance of the sample mean of the
residuals. Lags serves as a correction for serial
correlation of residuals. If empty or missing, the default
is 0 (no correction for serial correlation).

Alpha (Optional) Scalar or vector of significance levels of
the test. All elements of the input argument must be
0.001 ≤ Alpha ≤ 0.999.

TestType (Optional) Character string indicating the type of unit
root test. Possible choices are t and AR, indicating
an OLS t test of the AR coefficient and a test of the
unstudentized AR coefficient, respectively. ppTSTest
performs a case-insensitive check of TestType. If it is
empty or missing, the default is a t test.

13-109



ppTSTest

Output
Arguments

H Logical decision vector. Elements of H = 0
indicate acceptance of the null hypothesis;
elements of H = 1 indicate rejection of the null
hypothesis. Each element of H is associated with
a particular lag of Lags and significance level of
Alpha.

pValue Vector of p-values (significance levels) associated
with the test decision vector H. Each element of
pValue represents the probability of observing a
test statistic at least as extreme as that calculated
from the OLS regression model when the null
hypothesis is true. ppTSTest obtains p-values by
interpolation into the appropriate table of critical
values.

When a p-value is outside of the range of
tabulated significance levels (0.001 <= Alpha
<=0.999), a warning appears. ppTSTest then sets
pValue to the appropriate limit (pValue = 0.001
or 0.999).

TestStat Vector of test statistics associated with the
decision vector H.

CriticalValue Vector of critical values associated with the
decision vector H.

Notes You can specify Lags and Alpha as scalars or vectors. If you specify
both as vectors, they must be the same length (that is, they must have
the same number of elements). If one is specified as a scalar and the
other as a vector, ppTSTest performs a scalar expansion to enforce
identical-length vectors. If Lags is a scalar or an empty matrix, all
outputs are column vectors by default.

13-110



ppTSTest

All vector outputs are the same length as vector inputs Alpha and/or
Lags. By default all vector outputs are column vectors. If Lags is a row
vector, however, all vector outputs are row vectors.

This univariate unit root test is a conventional lower-tailed test.
ppTSTest compares the test statistic with the critical value to determine
whether the test is accepted or rejected. If the test statistic is less than
the critical value, reject the null hypothesis.

See Also dfARDTest, dfARTest, dfTSTest, ppARDTest, ppARTest

References Hamilton, J.D., Time Series Analysis, Princeton University Press,
Princeton, NJ, 1994.

Greene, W.H., Econometric Analysis, Prentice Hall, Fifth edition, Upper
Saddle River, NJ, 2003.

Enders, W., Applied Econometric Time Series, John Wiley & Sons, New
York, 1995.

Campbell, J.Y., A.W. Lo, and A.C. MacKinlay, The GARCH of Financial
Markets, Princeton University Press, Princeton, NJ, 1997.

13-111



price2ret

Purpose Convert price series to return series

Syntax [RetSeries,RetIntervals] = ...
price2ret(TickSeries,TickTimes,Method)

Description [RetSeries,RetIntervals] = ...
price2ret(TickSeries,TickTimes,Method) computes asset returns

for NUMOBS price observations of NUMASSETS assets.

Input
Arguments

TickSeries Time series of price data. TickSeries can be a
column vector or a matrix:

• As a vector, TickSeries represents a univariate
price series. The length of the vector is the
number of observations (NUMOBS). The first element
contains the oldest observation, and the last
element the most recent.

• As a matrix, TickSeries represents a
NUMOBS-by-number of assets (NUMASSETS) matrix of
asset prices. Rows correspond to time indices. The
first row contains the oldest observations and the
last row the most recent. price2ret assumes that
the observations across a given row occur at the
same time for all columns, where each column is a
price series of an individual asset.

TickTimes A NUMOBS element vector of monotonically increasing
observation times. Times are numeric and taken
either as serial date numbers (day units), or as
decimal numbers in arbitrary units (for example,
yearly). If TickTimes = [] or is unspecified, then

13-112



price2ret

price2ret assumes sequential observation times
from 1, 2, ..., NUMOBS.

Method Character string indicating the compounding method
to compute asset returns. If Method = 'Continuous',
= [], or is unspecified, then price2ret
computes continuously compounded returns. If
Method = 'Periodic', then price2ret assumes
simple periodic returns. Method is case insensitive.

Output
Arguments

RetSeries Array of asset returns:

• When TickSeries is a NUMOBS element column
vector, RetSeries is a NUMOBS-1 column vector.

• When TickSeries is a NUMOBS-by-NUMASSETS
matrix, RetSeries is a
(NUMOBS-1)-by-NUMASSETS matrix. price2ret
quotes the ith return of an asset for the period
TickTimes(i) to TickTimes(i+1). It then
normalizes it by the time interval between
successive price observations.

Assuming that

RetIntervals(i) = TickTimes(i+1) –
TickTimes(i)

then if Method is 'Continuous', [], or
is unspecified, price2ret computes the
continuously compounded returns as

RetSeries(i) = log
[TickSeries(i+1)/TickSeries(i)]/RetIntervals(i)

If Method is 'Periodic', then price2ret
computes the simple returns as

13-113



price2ret

RetSeries(i) =
[TickSeries(i+1)/TickSeries(i)] – 1
/RetIntervals(i)

RetIntervals NUMOBS-1 element vector of times between
observations. If TickTimes is [] or is unspecified,
price2ret assumes that all intervals are 1.

Examples 1 Create a stock price process continuously compounded at 10 percent:

S = 100*exp(0.10 * [0:19]'); % Create the stock price series

2 Convert the price series to a 10 percent return series:

R = price2ret(S); % Convert the price series to a 10 percent

% return series

[S [R;NaN]] % Pad the return series so vectors are of same

% length. price2ret computes the ith return from

% the ith and xth prices.

ans =

100.0000 0.1000

110.5171 0.1000

122.1403 0.1000

134.9859 0.1000

149.1825 0.1000

164.8721 0.1000

182.2119 0.1000

201.3753 0.1000

222.5541 0.1000

245.9603 0.1000

271.8282 0.1000

300.4166 0.1000

332.0117 0.1000

366.9297 0.1000

405.5200 0.1000

448.1689 0.1000

13-114



price2ret

495.3032 0.1000

547.3947 0.1000

604.9647 0.1000

668.5894 NaN

See Also ret2price

13-115



ret2price

Purpose Convert return series to price series

Syntax [TickSeries,TickTimes] = ...
ret2price(RetSeries,StartPrice,RetIntervals,StartTime,Method)

Description [TickSeries,TickTimes] = ...
ret2price(RetSeries,StartPrice,RetIntervals,StartTime,Method)

generates price series for the specified assets, given the asset starting
prices and the return observations for each asset.

Input
Arguments

RetSeries Time-series array of returns. RetSeries can be a
column vector or a matrix:

• As a vector, RetSeries represents a univariate
series of returns of a single asset. The length
of the vector is the number of observations
(NUMOBS). The first element contains the oldest
observation, and the last element the most
recent.

• As a matrix, RetSeries represents a
NUMOBS-by-number of assets (NUMASSETS)
matrix of asset returns. Rows correspond to
time indices. The first row contains the oldest
observations and the last row the most recent.
ret2price assumes that the observations
across a given row occur at the same time for
all columns, and each column is a return series
of an individual asset.

StartPrice A NUMASSETS element vector of initial prices
for each asset, or a single scalar initial price
applied to all assets. If StartPrice = [] or is
unspecified, all asset prices start at 1.

13-116



ret2price

RetIntervals A NUMOBS element vector of time intervals between
return observations, or a single scalar interval
applied to all observations. If RetIntervals is
[] or is unspecified, ret2price assumes that all
intervals have length 1.

StartTime (optional) Scalar starting time for the first
observation, applied to the price series of all
assets. The default is 0.

Method Character string indicating the compounding
method used to compute asset returns. If Method
is 'Continuous', [], or is unspecified, then
ret2price computes continuously compounded
returns. If Method is 'Periodic' then ret2price
computes simple periodic returns. Method is case
insensitive.

Output
Arguments

TickSeries Array of asset prices:

• When RetSeries is a NUMOBS element column
vector, TickSeries is a NUMOBS+1 column vector.
The first element contains the starting price of the
asset, and the last element the most recent price.

• When RetSeries is a NUMOBS-by-NUMASSETS matrix,
then RetSeries is a (NUMOBS+1)-by-NUMASSETS
matrix. The first row contains the starting price
of the assets, and the last row contains the most
recent prices.

TickTimes A NUMOBS+1 element vector of price observation times.
The initial time is zero unless specified in StartTime.

13-117



ret2price

Examples Example 1

1 Create a stock price process continuously compounded at 10 percent:

S = 100*exp(0.10 * [0:19]'); % Create the stock price series

2 Compute 10 percent returns for reference:

R = price2ret(S); % Convert the price series to a
% 10 percent return series

3 Convert the resulting return series to the original price series, and
compare results:

P = ret2price(R, 100); % Convert to the original price

% series

[S P] % Compare the original and

% computed price series

ans =

100.0000 100.0000

110.5171 110.5171

122.1403 122.1403

134.9859 134.9859

149.1825 149.1825

164.8721 164.8721

182.2119 182.2119

201.3753 201.3753

222.5541 222.5541

245.9603 245.9603

271.8282 271.8282

300.4166 300.4166

332.0117 332.0117

366.9297 366.9297

405.5200 405.5200

448.1689 448.1689

495.3032 495.3032

547.3947 547.3947

13-118



ret2price

604.9647 604.9647

668.5894 668.5894

Example 2

This example compares the relative price performance of the NASDAQ
and the NYSE indexes (see “Example Financial Time-Series Data Sets”
on page 1-12).

1 Convert the prices to returns:

load garchdata
nasdaq = price2ret(NASDAQ);

2 Convert the returns back to prices, specifying the same starting
price, 100, for each series:

nyse = price2ret(NYSE);

3 Plot both series:

plot(ret2price(price2ret([NASDAQ NYSE]), 100))
ylabel('Prices')
legend('Nasdaq', 'NYSE', 2)

13-119



ret2price

The blue (upper) plot shows the NASDAQ price series. The green
(lower) plot shows the NYSE price series.

See Also price2ret

13-120



14

Method Reference

Monte Carlo Simulation of Stochastic
Differential Equations (SDEs)
(p. 14-2)

Perform Monte Carlo simulation of
multivariate diffusion processes

Stochastic Differential Equation
(SDE) Class Constructors (p. 14-3)

Create SDE models



14 Method Reference

Monte Carlo Simulation of Stochastic Differential Equations
(SDEs)

interpolate Perform Brownian interpolation
of stochastic differential equations
(SDEs)

simByEuler Perform Euler simulation of
stochastic differential equations
(SDEs)

simBySolution Simulate approximate solution of
diagonal-drift HWV and GBM processes

simulate Simulate multivariate stochastic
differential equations (SDEs)

ts2func Convert time-series arrays to
callable functions of time and state

14-2



Stochastic Differential Equation (SDE) Class Constructors

Stochastic Differential Equation (SDE) Class Constructors

bm Construct Brownian motion models
(objects of class BM)

cev Create constant elasticity of variance
models (objects of class CEV)

cir Create Cox-Ingersoll-Ross
mean-reverting square root diffusion
models (objects of class CIR)

diffusion Create diffusion-rate model
components

drift Create drift-rate model components

gbm Create generalized geometric
Brownian motion models (objects of
class GBM)

hwv Create Hull-White/Vasicek
mean-reverting Gaussian diffusion
models (objects of class HWV)

sde Create stochastic differential
equation models (objects of class SDE)

sdeddo Create stochastic differential
equation from drift and diffusion
models (objects of class SDEDDO)

sdeld Create stochastic differential
equation from linear drift-rate
models (objects of class SDELD)

sdemrd Create stochastic differential
equation (SDE) from mean-reverting
drift-rate models (objects of class
SDEMRD)

14-3



14 Method Reference

14-4



15

Methods — Alphabetical
List



bm

Purpose Construct Brownian motion models (objects of class BM)

Syntax BM = bm(Mu, Sigma)

BM = bm(Mu, Sigma, 'Name1', Value1, 'Name2', Value2, ...)

Classes BM

Description Use this class constructor to create and display Brownian motion
(sometimes called arithmetic Brownian motion or generalized Wiener
process) objects that derive from the SDELD (SDE with drift rate
expressed in linear form) class. You can use BM objects to simulate
sample paths of NVARS state variables driven by NBROWNS sources of
risk over NPERIODS consecutive observation periods, approximating
continuous-time Brownian motion stochastic processes. This enables
you to transform a vector of NBROWNS uncorrelated, zero-drift,
unit-variance rate Brownian components into a vector of NVARS
Brownian components with arbitrary drift, variance rate, and
correlation structure.

The bm method allows you to simulate any vector-valued BM process
of the form:

dX t dt V t dWt t= +μ( ) ( ) (15-1)

where:

• Xt is an NVARS-by-1 state vector of process variables.

• μ is an NVARS-by-1 drift-rate vector.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.

• dWt is an NBROWNS-by-1 vector of (possibly) correlated
zero-drift/unit-variance rate Brownian components.

15-2



bm

Input
Arguments

You can specify required input parameters as one of the following types:

• A MATLAB® array. Specifying an array indicates a static
(non-time-varying) parametric specification. This array fully
captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support
for virtually any static, dynamic, linear, or nonlinear model. This
parameter is supported via an interface, because all implementation
details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input
parameters as needed.

The required input parameters are as follows:

Mu Mu represents μ in Equation 15-1. If you specify Mu as an
array, it must be an NVARS-by-1 column vector representing
the drift rate (the expected instantaneous rate of drift, or
time trend). If you specify Mu as a function, it calculates the
expected instantaneous rate of drift. This function must
generate an NVARS-by-1 column vector when invoked with
two inputs: a real-valued scalar observation time t and an
NVARS-by-1 state vector Xt.

Sigma Sigma represents the parameter V in Equation 15-1. If you
specify Sigma as an array, it must be an NVARS-by-NBROWNS
matrix of instantaneous volatility rates. In this case, each
row of Sigma corresponds to a particular state variable.
Each column of Sigma corresponds to a particular Brownian
source of uncertainty, and associates the magnitude of the
exposure of state variables with sources of uncertainty.
If you specify Sigma as a function, it must generate
an NVARS-by-NBROWNS matrix of volatility rates when
invoked with two inputs: a real-valued scalar observation

15-3



bm

time t and an NVARS-by-1 state vector Xt. Although the
constructor does not enforce restrictions on the sign of this
argument, Sigma is usually specified as a positive value.

Optional
Input
Arguments

You can specify optional inputs as matching parameter name/value
pairs as follows:

• You specify the parameter name as a character string, followed by
its corresponding value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

• You can specify unambiguous partial string matches.

Valid parameter names are as follows:

StartTime Scalar starting time of the first observation, applied
to all state variables. If you do not specify a value for
StartTime, the default is 0.

StartState Scalar, NVARS-by-1 column vector, or
NVARS-by-NTRIALS matrix of initial values of
the state variables. If StartState is a scalar, bm
applies the same initial value to all state variables
on all trials.

If StartState is a column vector, bm applies a unique
initial value to each state variable on all trials.

If StartState is a matrix, bm applies a unique initial
value to each state variable on each trial.

If you do not specify a value for StartState, all
variables start at 1.

15-4



bm

Correlation Correlation between Gaussian random variates
drawn to generate the Brownian motion vector
(Wiener processes). You can specify Correlation as
an NBROWNS-by-NBROWNS positive semidefinite matrix,
or as a deterministic function C(t) that accepts the
current time t and returns an NBROWNS-by-NBROWNS
positive semidefinite correlation matrix. A
Correlation matrix represents a static condition.

As a deterministic function of time, Correlation
allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the
default is an NBROWNS-by-NBROWNS identity matrix
representing independent Gaussian processes.

Simulation A user-defined simulation function or SDE
simulation method. If you do not specify a value for
Simulation, the default method is simulation by
Euler approximation (simByEuler).

Output
Arguments

BM Object of class BM with the following displayed
parameters:

• StartTime: Initial observation time

• StartState: Initial state at time StartTime

• Correlation: Access function for the Correlation
input argument, callable as a function of time

• Drift: Composite drift-rate function, callable as a
function of time and state

• Diffusion: Composite diffusion-rate function,
callable as a function of time and state

• Simulation: A simulation function or method

15-5



bm

• Mu: Access function for the input argument Mu,
callable as a function of time and state

• Sigma: Access function for the input argument
Sigma, callable as a function of time and state

Remarks When you specify the required input parameters as arrays, they are
associated with a specific parametric form. By contrast, when you
specify either required input parameter as a function, you can customize
virtually any specification.

Accessing the output parameters with no inputs simply returns the
original input specification. Thus, when you invoke these parameters
with no inputs, they behave like simple properties and allow you to test
the data type (double vs. function, or equivalently, static vs. dynamic)
of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like
functions, giving the impression of dynamic behavior. The parameters
accept the observation time t and a state vector Xt, and return an array
of appropriate dimension. Even if you originally specified an input as
an array, bm treats it as a static function of time and state, thereby
guaranteeing that all parameters are accessible by the same interface.

Examples “Creating Brownian Motion (BM) Models” on page 5-21

See Also drift, diffusion, sdeld

15-6



cev

Purpose Create constant elasticity of variance models (objects of class CEV)

Syntax CEV = cev(Return, Alpha, Sigma)

CEV = cev(Return, Alpha, Sigma, 'Name1', Value1, 'Name2',
Value2, ...)

Classes CEV

Description Use this class constructor to create and display CEV objects, which derive
from the SDELD (SDE with drift rate expressed in linear form) class. You
can use CEV objects to simulate sample paths of NVARS state variables
driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time
stochastic processes.

This method allows you to simulate any vector-valued SDE of the form:

dX t X dt D t X V t dWt t t
t

t= +μ α( ) ( , ) ( )( ) (15-2)

where:

• Xt is an NVARS-by-1 state vector of process variables.

• μ is an NVARS-by-NVARS (generalized) expected instantaneous rate of
return matrix.

• D is an NVARS-by-NVARS diagonal matrix, where each element along
the main diagonal is the corresponding element of the state vector
raised to the corresponding power of α.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.

• dWt is an NBROWNS-by-1 Brownian motion vector.

Input
Arguments

You can specify required input parameters as one of the following types:

• A MATLAB® array. Specifying an array indicates a static
(non-time-varying) parametric specification. This array fully

15-7



cev

captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support
for virtually any static, dynamic, linear, or nonlinear model. This
parameter is supported via an interface, because all implementation
details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input
parameters as needed.

The required input parameters are as follows:

Return Return represents the parameter μ in Equation 15-2. If
you specify Return as an array, it is a NVARS-by-NVARS
2-dimensional matrix that represents the expected
(mean) instantaneous rate of return.

If you specify Return as a function, it calculates
the expected instantaneous rate of return. This
function must generate an NVARS-by-NVARS matrix
when invoked with two inputs: a real-valued scalar
observation time t and an NVARS-by-1 state vector Xt.

Alpha Alpha determines the format of the parameter D in
Equation 15-2. If you specify Alpha as an array, it
represents an NVARS-by-1 column vector of exponents.

If you specify it as a function, Alpha must return an
NVARS-by-1 column vector of exponents when invoked
with two inputs: a real-valued scalar observation time
t and an NVARS-by-1 state vector Xt.

15-8



cev

Although the constructor does not enforce restrictions
on the sign of Alpha, this exponent is usually specified
as a positive value.

Sigma Sigma represents the parameter V in Equation
15-2. If you specify Sigma as an array, it represents
an NVARS-by-NBROWNS 2-dimensional matrix of
instantaneous volatility rates. In this case, each row of
Sigma corresponds to a particular state variable. Each
column of Sigma corresponds to a particular Brownian
source of uncertainty, and associates the magnitude
of the exposure of state variables with sources of
uncertainty.

If you specify it as a function, Sigma must generate
an NVARS-by-NBROWNS matrix of volatility rates
when invoked with two inputs: a real-valued scalar
observation time t and an NVARS-by-1 state vector Xt.

Although the constructor does not enforce restrictions
on the sign of Sigma, it is usually specified as a positive
value.

Optional
Input
Arguments

You can specify optional inputs as matching parameter name/value
pairs as follows:

• You specify the parameter name as a character string, followed by
its corresponding value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

• You can specify unambiguous partial string matches.

Valid parameter names are as follows:

15-9



cev

StartTime Scalar starting time of the first observation, applied
to all state variables. If you do not specify a value for
StartTime, the default is 0.

StartState Scalar, NVARS-by-1 column vector, or
NVARS-by-NTRIALS matrix of initial values of
the state variables. If StartState is a scalar, cev
applies the same initial value to all state variables
on all trials.

If StartState is a column vector, cev applies a
unique initial value to each state variable on all
trials.

If StartState is a matrix, cev applies a unique
initial value to each state variable on each trial.

If you do not specify a value for StartState, all
variables start at 1.

Correlation Correlation between Gaussian random variates
drawn to generate the Brownian motion vector
(Wiener processes). You can specify Correlation as
an NBROWNS-by-NBROWNS positive semidefinite matrix,
or as a deterministic function C(t) that accepts the
current time t and returns an NBROWNS-by-NBROWNS
positive semidefinite correlation matrix. A
Correlation matrix represents a static condition.

As a deterministic function of time, Correlation
allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the
default is an NBROWNS-by-NBROWNS identity matrix
representing independent Gaussian processes.

Simulation A user-defined simulation function or SDE
simulation method. If you do not specify a value for
Simulation, the default method is simulation by
Euler approximation (simByEuler).

15-10



cev

Output
Arguments

CEV Object of class CEV with the following displayed
parameters:

• StartTime: Initial observation time

• StartState: Initial state at time StartTime

• Correlation: Access function for the Correlation
input argument, callable as a function of time

• Drift: Composite drift-rate function, callable as a
function of time and state

• Diffusion: Composite diffusion-rate function, callable
as a function of time and state

• Simulation: A simulation function or method

• Return: Access function for the input argument
Return, callable as a function of time and state

• Alpha: Access function for the input argument Alpha,
callable as a function of time and state

• Sigma: Access function for the input argument Sigma,
callable as a function of time and state

Remarks When you specify the required input parameters as arrays, they are
associated with a specific parametric form. By contrast, when you
specify either required input parameter as a function, you can customize
virtually any specification.

Accessing the output parameters with no inputs simply returns the
original input specification. Thus, when you invoke these parameters
with no inputs, they behave like simple properties and allow you to test
the data type (double vs. function, or equivalently, static vs. dynamic)
of the original input specification. This is useful for validating and
designing methods.

15-11



cev

When you invoke these parameters with inputs, they behave like
functions, giving the impression of dynamic behavior. The parameters
accept the observation time t and a state vector Xt, and return an array
of appropriate dimension. Even if you originally specified an input as
an array, cev treats it as a static function of time and state, thereby
guaranteeing that all parameters are accessible by the same interface.

Examples • “Creating Constant Elasticity of Variance (CEV) Models” on page 5-22

• Implementing Multidimensional Equity Market Models,
Implementation 3: Using SDELD, CEV, and GBM Objects

See Also drift, diffusion, sdeld

15-12



cir

Purpose Create Cox-Ingersoll-Ross mean-reverting square root diffusion models
(objects of class CIR)

Syntax CIR = cir(Speed, Level, Sigma)

CIR = cir(Speed, Level, Sigma, 'Name1', Value1, 'Name2',
Value2, ...)

Classes CIR

Description Use this class constructor to create and display CIR objects, which derive
from the SDEMRD (SDE with drift rate expressed in mean-reverting
form) class. You can use CIR objects to simulate sample paths of NVARS
state variables expressed in mean-reverting drift-rate form. These
state variables are driven by NBROWNS Brownian motion sources of
risk over NPERIODS consecutive observation periods, approximating
continuous-time CIR stochastic processes with square root diffusions.

This method allows you to simulate any vector-valued SDE of the form:

dX S t L t X dt D t X V t dWt t t t= − +( )[ ( ) ] ( , ) ( )
1
2 (15-3)

where:

• Xt is an NVARS-by-1 state vector of process variables.

• S is an NVARS-by-NVARS matrix of mean reversion speeds (the rate
of mean reversion).

• L is an NVARS-by-1 vector of mean reversion levels (long-run mean
or level).

• D is an NVARS-by-NVARS diagonal matrix, where each element along
the main diagonal is the square root of the corresponding element
of the state vector.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.

• dWt is an NBROWNS-by-1 Brownian motion vector.

15-13



cir

Input
Arguments

You can specify required input parameters as one of the following types:

• A MATLAB® array. Specifying an array indicates a static
(non-time-varying) parametric specification. This array fully
captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support
for virtually any static, dynamic, linear, or nonlinear model. This
parameter is supported via an interface, because all implementation
details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input
parameters as needed.

The required input parameters are as follows:

Speed Speed represents S in Equation 15-3. If you specify
Speed as an array, it must be an NVARS-by-NVARS matrix
of mean-reversion speeds (the rate or speed at which the
state vector reverts to its long-run average Level).

If you specify Speed as a function, it must generate an
NVARS-by-NVARS matrix of reversion rates when invoked
with two inputs: a real-valued scalar observation time
t and an NVARS-by-1 state vector Xt.

Level Level represents L in Equation 15-3. If you specify
Level as an array, it must be an NVARS-by-1 column
vector of reversion levels.

If you specify Level as a function, it must generate
an NVARS-by-1 column vector of reversion levels when

15-14



cir

invoked with two inputs: t and an NVARS-by-1 state
vector Xt.

Sigma Sigma represents the parameter V in Equation
15-3. If you specify Sigma as an array, it must
be an NVARS-by-NBROWNS 2-dimensional matrix of
instantaneous volatility rates. In this case, each row of
Sigma corresponds to a particular state variable. Each
column of Sigma corresponds to a particular Brownian
source of uncertainty, and associates the magnitude
of the exposure of state variables with sources of
uncertainty.

If you specify Sigma as a function, it must generate
an NVARS-by-NBROWNS matrix of volatility rates
when invoked with two inputs: a real-valued scalar
observation time t and an NVARS-by-1 state vector Xt.

15-15



cir

Note Although the constructor does not enforce restrictions on the sign
of these input arguments, they are usually specified as positive values.

Optional
Input
Arguments

You can specify optional inputs as matching parameter name/value
pairs as follows:

• You specify the parameter name as a character string, followed by
its corresponding value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

• You can specify unambiguous partial string matches.

Valid parameter names are as follows:

StartTime Scalar starting time of the first observation, applied
to all state variables. If you do not specify a value for
StartTime, the default is 0.

StartState Scalar, NVARS-by-1 column vector, or
NVARS-by-NTRIALS matrix of initial values of
the state variables. If StartState is a scalar, cir
applies the same initial value to all state variables
on all trials.

If StartState is a column vector, cir applies a
unique initial value to each state variable on all
trials.

If StartState is a matrix, cir applies a unique
initial value to each state variable on each trial.

If you do not specify a value for StartState, all
variables start at 1.

15-16



cir

Correlation Correlation between Gaussian random variates
drawn to generate the Brownian motion vector
(Wiener processes). You can specify Correlation as
an NBROWNS-by-NBROWNS positive semidefinite matrix,
or as a deterministic function C(t) that accepts the
current time t and returns an NBROWNS-by-NBROWNS
positive semidefinite correlation matrix. A
Correlation matrix represents a static condition.

As a deterministic function of time, Correlation
allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the
default is an NBROWNS-by-NBROWNS identity matrix
representing independent Gaussian processes.

Simulation A user-defined simulation function or SDE
simulation method. If you do not specify a value for
Simulation, the default method is simulation by
Euler approximation (simByEuler).

Output
Arguments

CIR Object of class CIR with the following displayed
parameters:

• StartTime: Initial observation time

• StartState: Initial state at time StartTime

• Correlation: Access function for the Correlation
input argument, callable as a function of time

• Drift: Composite drift-rate function, callable as a
function of time and state

• Diffusion: Composite diffusion-rate function,
callable as a function of time and state

• Simulation: A simulation function or method

15-17



cir

• Speed: Access function for the input argument Speed,
callable as a function of time and state

• Level: Access function for the input argument Level,
callable as a function of time and state

• Sigma: Access function for the input argument Sigma,
callable as a function of time and state

Remarks When you specify the required input parameters as arrays, they are
associated with a specific parametric form. By contrast, when you
specify either required input parameter as a function, you can customize
virtually any specification.

Accessing the output parameters with no inputs simply returns the
original input specification. Thus, when you invoke these parameters
with no inputs, they behave like simple properties and allow you to test
the data type (double vs. function, or equivalently, static vs. dynamic)
of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like
functions, giving the impression of dynamic behavior. The parameters
accept the observation time t followed by a state vector Xt, and return an
array of appropriate dimension. Even if you originally specified an input
as an array, cir treats it as a static function of time and state, thereby
guaranteeing that all parameters are accessible by the same interface.

Examples “Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models” on
page 5-25

See Also drift, diffusion, sdeddo

15-18



diffusion

Purpose Create diffusion-rate model components

Syntax DiffusionRate = diffusion(Alpha, Sigma)

Classes Diffusion

Description Use the diffusion class constructor to specify the diffusion-rate
component of continuous-time stochastic differential equations (SDEs).
The diffusion-rate specification supports the simulation of sample paths
of NVARS state variables driven by NBROWNS Brownian motion sources
of risk over NPERIODS consecutive observation periods, approximating
continuous-time stochastic processes.

The diffusion-rate specification can be any NVARS-by-NBROWNS
matrix-valued function G of the general form:

G t X D t X V tt t
t( , ) ( , ) ( )( )= α (15-4)

associated with a vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• Xt is an NVARS-by-1 state vector of process variables.

• dWt is an NBROWNS-by-1 Brownian motion vector.

• D is an NVARS-by-NVARS diagonal matrix, in which each element along
the main diagonal is the corresponding element of the state vector
raised to the corresponding power of α.

• V is described in “Input Arguments” on page 15-20.

The diffusion-rate specification is very flexible, and it provides direct
parametric support for static volatilities and state vector exponents. It
is also extensible, and provides indirect support for dynamic/nonlinear
models via an interface. This enables you to specify virtually any
diffusion-rate specification.

15-19



diffusion

Input
Arguments

You can specify required input parameters as one of the following types:

• A MATLAB® array. Specifying an array indicates a static
(non-time-varying) parametric specification. This array fully
captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support
for virtually any static, dynamic, linear, or nonlinear model. This
parameter is supported via an interface, because all implementation
details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input
parameters as needed.

The required input parameters are as follows:

Alpha Alpha determines the format of the parameter D in
Equation 15-4. If you specify Alpha as an array, it must be
an NVARS-by-1 column vector of exponents. If you specify
Alpha as a function, it must return an NVARS-by-1 column
vector of exponents when invoked with two inputs: a
real-valued scalar observation time t and an NVARS-by-1
state vector Xt.

Sigma Sigma represents the parameter V in Equation 15-4. If you
specify Sigma as an array, it must be an NVARS-by-NBROWNS
2-dimensional matrix of instantaneous volatility rates. In
this case, each row of Sigma corresponds to a particular
state variable. Each column corresponds to a particular
Brownian source of uncertainty, and associates the
magnitude of the exposure of state variables with sources
of uncertainty. If you specify Sigma as a function, it must
return an NVARS-by-NBROWNS matrix of volatility rates

15-20



diffusion

when invoked with two inputs: a real-valued scalar
observation time t and an NVARS-by-1 state vector Xt.

Note Although the diffusion constructor enforces no restrictions on
the signs of these volatility parameters, they are usually specified as
positive values.

Output
Arguments

DiffusionRate Object of class diffusion that encapsulates the
composite diffusion-rate specification, with the
following displayed parameters:

• Rate: The diffusion-rate function, G. Rate is
the diffusion-rate calculation engine. It accepts
the current time t and an NVARS-by-1 state
vector Xt as inputs, and returns an NVARS-by-1
diffusion-rate vector.

• Alpha: Access function for the input argument
Alpha.

• Sigma: Access function for the input argument
Sigma.

Remarks When you specify the input arguments Alpha and Sigma as MATLAB
arrays, they are associated with a specific parametric form. By contrast,
when you specify either Alpha or Sigma as a function, you can customize
virtually any diffusion-rate specification.

Accessing the output diffusion-rate parameters Alpha and Sigma with
no inputs simply returns the original input specification. Thus, when
you invoke diffusion-rate parameters with no inputs, they behave
like simple properties and allow you to test the data type (double vs.
function, or equivalently, static vs. dynamic) of the original input
specification. This is useful for validating and designing methods.

15-21



diffusion

When you invoke diffusion-rate parameters with inputs, they behave
like functions, giving the impression of dynamic behavior. The
parameters Alpha and Sigma accept the observation time t and a state
vector Xt, and return an array of appropriate dimension. Specifically,
parameters Alpha and Sigma evaluate the corresponding diffusion-rate
component. Even if you originally specified an input as an array,
diffusion treats it as a static function of time and state, thereby
guaranteeing that all parameters are accessible by the same interface.

Examples “Creating Drift and Diffusion Objects” on page 5-16

See Also drift, sdeddo

15-22



drift

Purpose Create drift-rate model components

Syntax DriftRate = drift(A, B)

Classes Drift

Description Use this constructor to specify the drift-rate component of
continuous-time stochastic differential equations (SDEs). The
drift-rate specification supports the simulation of sample paths of
NVARS state variables driven by NBROWNS Brownian motion sources of
risk over NPERIODS consecutive observation periods, approximating
continuous-time stochastic processes.

The drift-rate specification can be any NVARS-by-1 vector-valued
function F of the general form:

F t X A t B t Xt t( , ) ( ) ( )= + (15-5)

associated with a vector-valued SDE of the form

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• Xt is an NVARS-by-1 state vector of process variables.

• dWt is an NBROWNS-by-1 Brownian motion vector.

• A and B are described in “Input Arguments” on page 15-24.

The drift-rate specification is very flexible, and it provides direct
parametric support for static/linear drift models. It is also extensible,
and provides indirect support for dynamic/nonlinear models via
an interface. This enables you to specify virtually any drift-rate
specification.

15-23



drift

Input
Arguments

You can specify required input parameters as one of the following types:

• A MATLAB® array. Specifying an array indicates a static
(non-time-varying) parametric specification. This array fully
captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support
for virtually any static, dynamic, linear, or nonlinear model. This
parameter is supported via an interface, because all implementation
details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input
parameters as needed.

The required input parameters are as follows:

A This argument represents the parameter A in Equation
15-5. If you specify A as an array, it must be an NVARS-by-1
column vector. If you specify A as a function, it must
return an NVARS-by-1 column vector when invoked with
two inputs: a real-valued scalar observation time t and an
NVARS-by-1 state vector Xt.

B This argument represents the parameter B in Equation
15-5. If you specify B as an array, it must be an
NVARS-by-NVARS 2-dimensional matrix. If you specify B
as a function, it must return an NVARS-by-NVARS column
vector when invoked with two inputs: a real-valued scalar
observation time t and an NVARS-by-1 state vector Xt.

15-24



drift

Output
Arguments

DriftRate Object of class drift that encapsulates the composite
drift-rate specification, with the following displayed
parameters:

• Rate: The drift-rate function, F. Rate is the drift-rate
calculation engine. It accepts the current time t and
an NVARS-by-1 state vector Xt as inputs, and returns
an NVARS-by-1 drift-rate vector.

• A: Access function for the input argument A.

• B: Access function for the input argument B.

Remarks When you specify the input arguments A and B as MATLAB arrays,
they are associated with a linear drift parametric form. By contrast,
when you specify either A or B as a function, you can customize virtually
any drift-rate specification.

Accessing the output drift-rate parameters A and B with no inputs
simply returns the original input specification. Thus, when you invoke
drift-rate parameters with no inputs, they behave like simple properties
and allow you to test the data type (double vs. function, or equivalently,
static vs. dynamic) of the original input specification. This is useful for
validating and designing methods.

When you invoke drift-rate parameters with inputs, they behave like
functions, giving the impression of dynamic behavior. The parameters A
and B accept the observation time t and a state vector Xt, and return
an array of appropriate dimension. Specifically, parameters A and B
evaluate the corresponding drift-rate component. Even if you originally
specified an input as an array, drift treats it as a static function of
time and state, thereby guaranteeing that all parameters are accessible
by the same interface.

Examples “Creating Drift and Diffusion Objects” on page 5-16

See Also diffusion, sdeddo

15-25



gbm

Purpose Create generalized geometric Brownian motion models (objects of class
GBM)

Syntax GBM = gbm(Return, Sigma)

GBM = gbm(Return, Sigma, 'Name1', Value1, 'Name2', Value2,
...)

Classes GBM

Description Use this constructor to create and display GBM objects, which derive from
the CEV (constant elasticity of variance) class. You can use GBM objects
to simulate sample paths of NVARS state variables driven by NBROWNS
Brownian motion sources of risk over NPERIODS consecutive observation
periods, approximating continuous-time GBM stochastic processes.

This method allows simulation of vector-valued GBM processes of the
form:

dX t X dt D t X V t dWt t t t= +μ( ) ( , ) ( ) (15-6)

where:

• Xt is an NVARS-by-1 state vector of process variables.

• μ is an NVARS-by-NVARS generalized expected instantaneous rate of
return matrix.

• D is an NVARS-by-NVARS diagonal matrix, where each element along
the main diagonal is the square root of the corresponding element
of the state vector.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.

• dWt is an NBROWNS-by-1 Brownian motion vector.

15-26



gbm

Input
Arguments

You can specify required input parameters as one of the following types:

• A MATLAB® array. Specifying an array indicates a static
(non-time-varying) parametric specification. This array fully
captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support
for virtually any static, dynamic, linear, or nonlinear model. This
parameter is supported via an interface, because all implementation
details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input
parameters as needed.

The required input parameters are as follows:

Return Return represents the parameter μ in Equation 15-6.
If you specify Return as an array, it must be an
NVARS-by-NVARS matrix representing the expected
(mean) instantaneous rate of return. If you specify it
as a function, Return must return an NVARS-by-NVARS
matrix when invoked with two inputs: a real-valued
scalar observation time t and an NVARS-by-1 state vector
Xt.

Sigma Sigma represents the parameter V in Equation 15-6.
If you specify Sigma as an array, it must be an
NVARS-by-NBROWNS matrix of instantaneous volatility
rates. In this case, each row of Sigma corresponds to
a particular state variable. Each column corresponds
to a particular Brownian source of uncertainty, and
associates the magnitude of the exposure of state
variables with sources of uncertainty. If you specify it
as a function, Sigma must return an NVARS-by-NBROWNS
matrix of volatility rates when invoked with two

15-27



gbm

inputs: a real-valued scalar observation time t and an
NVARS-by-1 state vector Xt.Although the gbm constructor
enforces no restrictions on the sign of Sigma volatilities,
they are usually specified as positive values.

Optional
Input
Arguments

You specify optional input arguments as variable-length lists of
matching parameter name/value pairs: 'Name1', Value1, 'Name2',
Value2, ... and so on. The following rules apply when specifying
parameter-name pairs:

• You specify the parameter name as a character string, followed by its
corresponding parameter value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

• You can specify unambiguous partial string matches.

Valid parameter names are as follows:

StartTime Scalar starting time of the first observation, applied
to all state variables. If you do not specify a value for
StartTime, the default is 0.

StartState Scalar, NVARS-by-1 column vector, or
NVARS-by-NTRIALS matrix of initial values of
the state variables. If StartState is a scalar, gbm
applies the same initial value to all state variables
on all trials.

If StartState is a column vector, gbm applies a
unique initial value to each state variable on all
trials.

If StartState is a matrix, gbm applies a unique
initial value to each state variable on each trial.

15-28



gbm

If you do not specify a value for StartState, all
variables start at 1.

Correlation Correlation between Gaussian random variates
drawn to generate the Brownian motion vector
(Wiener processes). You can specify Correlation as
an NBROWNS-by-NBROWNS positive semidefinite matrix,
or as a deterministic function C(t) that accepts the
current time t and returns an NBROWNS-by-NBROWNS
positive semidefinite correlation matrix.A
Correlation matrix represents a static condition.

As a deterministic function of time, Correlation
allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the
default is an NBROWNS-by-NBROWNS identity matrix
representing independent Gaussian processes.

Simulation A user-defined simulation function or SDE
simulation method. If you do not specify a value for
Simulation, the default method is simulation by
Euler approximation (simByEuler).

Output
Arguments

GBM Object of class gbm with the following displayed
parameters:

• StartTime: Initial observation time

• StartState: Initial state at StartTime

• Correlation: Access function for the Correlation
input, callable as a function of time

• Drift: Composite drift-rate function, callable as a
function of time and state

• Diffusion: Composite diffusion-rate function, callable
as a function of time and state

15-29



gbm

• Simulation: A simulation function or method

• Return: Access function for the input argument
Return, callable as a function of time and state

• Sigma: Access function for the input argument Sigma,
callable as a function of time and state

Remarks When you specify the required input parameters as arrays, they are
associated with a specific parametric form. By contrast, when you
specify either required input parameter as a function, you can customize
virtually any specification.

Accessing the output parameters with no inputs simply returns the
original input specification. Thus, when you invoke these parameters
with no inputs, they behave like simple properties and allow you to test
the data type (double vs. function, or equivalently, static vs. dynamic)
of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like
functions, giving the impression of dynamic behavior. The parameters
accept the observation time t and a state vector Xt, and return an array
of appropriate dimension. Even if you originally specified an input as
an array, gbm treats it as a static function of time and state, thereby
guaranteeing that all parameters are accessible by the same interface.

Examples • “Creating Geometric Brownian Motion (GBM) Models” on page 5-23

• Implementing Multidimensional Equity Market Models,
Implementation 3: Using SDELD, CEV, and GBM Objects

See Also drift, diffusion, cev

15-30



hwv

Purpose Create Hull-White/Vasicek mean-reverting Gaussian diffusion models
(objects of class HWV)

Syntax HWV = hwv(Speed, Level, Sigma)

HWV = hwv(Speed, Level, Sigma, 'Name1', Value1, 'Name2',
Value2, ...)

Classes HWV

Description Use this constructor to create and display HWV objects, which derive
from the SDEMRD (SDE with drift rate expressed in mean-reverting
form) class. You can use HWV objects to simulate sample paths of NVARS
state variables expressed in mean-reverting drift-rate form. These
state variables are driven by NBROWNS Brownian motion sources of
risk over NPERIODS consecutive observation periods, approximating
continuous-time HWV stochastic processes with Gaussian diffusions.

This method allows you to simulate vector-valued HWV processes of the
form:

dX S t L t X dt V t dWt t t= − +( )[ ( ) ] ( ) (15-7)

where:

• Xt is an NVARS-by-1 state vector of process variables.

• S is an NVARS-by-NVARS of mean reversion speeds (the rate of mean
reversion).

• L is an NVARS-by-1 vector of mean reversion levels (long-run mean
or level).

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.

• dWtis an NBROWNS-by-1 Brownian motion vector.

15-31



hwv

Input
Arguments

You can specify required input parameters as one of the following types:

• A MATLAB® array. Specifying an array indicates a static
(non-time-varying) parametric specification. This array fully
captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support
for virtually any static, dynamic, linear, or nonlinear model. This
parameter is supported via an interface, because all implementation
details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input
parameters as needed.

The required input parameters are as follows:

Speed Speed represents the function S in Equation 15-7. If you
specify Speed as an array, it must be an NVARS-by-NVARS
matrix of mean-reversion speeds (the rate at which the
state vector reverts to its long-run average Level). If
you specify Speed as a function, it calculates the speed
of mean reversion. This function must generate an
NVARS-by-NVARS matrix of reversion rates when called
with two inputs: a real-valued scalar observation time t
and an NVARS-by-1 state vector Xt.

Level Level represents the function L in Equation 15-7. If
you specify Level as an array, it must be an NVARS-by-1
column vector of reversion levels. If you specify Level
as a function, it must generate an NVARS-by-1 column
vector of reversion levels when called with two inputs: a

15-32



hwv

real-valued scalar observation time t and an NVARS-by-1
state vector Xt.

Sigma Sigma represents the parameter V in Equation 15-7. If you
specify Sigma as an array, it must be an NVARS-by-NBROWNS
matrix of instantaneous volatility rates. In this case, each
row of Sigma corresponds to a particular state variable.
Each column corresponds to a particular Brownian source
of uncertainty, and associates the magnitude of the
exposure of state variables with sources of uncertainty.
If you specify it as a function, Sigma must return an
NVARS-by-NBROWNS matrix of volatility rates when invoked
with two inputs: a real-valued scalar observation time t
and an NVARS-by-1 state vector Xt.

Note Although the constructor does not enforce restrictions on the
signs of any of these input arguments, each argument is usually
specified as a positive value.

Optional
Input
Arguments

You specify optional input arguments as variable-length lists of
matching parameter name/value pairs: 'Name1', Value1, 'Name2',
Value2, ... and so on. The following rules apply when specifying
parameter-name pairs:

• You specify the parameter name as a character string, followed by its
corresponding parameter value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

• You can specify unambiguous partial string matches.

Valid parameter names are as follows:

15-33



hwv

StartTime Scalar starting time of the first observation, applied
to all state variables. If you do not specify a value for
StartTime, the default is 0.

StartState Scalar, NVARS-by-1 column vector, or
NVARS-by-NTRIALS matrix of initial values of
the state variables. If StartState is a scalar, hwv
applies the same initial value to all state variables
on all trials.

If StartState is a column vector, hwv applies a
unique initial value to each state variable on all
trials.

If StartState is a matrix, hwv applies a unique
initial value to each state variable on each trial.

If you do not specify a value for StartState, all
variables start at 1.

Correlation Correlation between Gaussian random variates
drawn to generate the Brownian motion vector
(Wiener processes). You can specify Correlation as
an NBROWNS-by-NBROWNS positive semidefinite matrix,
or as a deterministic function C(t) that accepts the
current time t and returns an NBROWNS-by-NBROWNS
positive semidefinite correlation matrix. A
Correlation matrix represents a static condition.

As a deterministic function of time, Correlation
allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the
default is an NBROWNS-by-NBROWNS identity matrix
representing independent Gaussian processes.

Simulation A user-defined simulation function or SDE
simulation method. If you do not specify a value for
Simulation, the default method is simulation by
Euler approximation (simByEuler).

15-34



hwv

Output
Arguments

HWV Object of class hwv with the following displayed
parameters:

• StartTime: Initial observation time

• StartState: Initial state at StartTime

• Correlation: Access function for the Correlation
input, callable as a function of time

• Drift: Composite drift-rate function, callable as a
function of time and state

• Diffusion: Composite diffusion-rate function, callable
as a function of time and state

• Simulation: A simulation function or method

• Speed: Access function for the input argument Speed,
callable as a function of time and state

• Level: Access function for the input argument Level,
callable as a function of time and state

• Sigma: Access function for the input argument Sigma,
callable as a function of time and state

Remarks When you specify the required input parameters as arrays, they are
associated with a specific parametric form. By contrast, when you
specify either required input parameter as a function, you can customize
virtually any specification.

Accessing the output parameters with no inputs simply returns the
original input specification. Thus, when you invoke these parameters
with no inputs, they behave like simple properties and allow you to test
the data type (double vs. function, or equivalently, static vs. dynamic)
of the original input specification. This is useful for validating and
designing methods.

15-35



hwv

When you invoke these parameters with inputs, they behave like
functions, giving the impression of dynamic behavior. The parameters
accept the observation time t and a state vector Xt, and return an array
of appropriate dimension. Even if you originally specified an input as
an array, hwv treats it as a static function of time and state, thereby
guaranteeing that all parameters are accessible by the same interface.

Examples “Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models” on
page 5-26

See Also drift, diffusion, sdeddo

15-36



interpolate

Purpose Perform Brownian interpolation of stochastic differential equations
(SDEs)

Syntax [XT, T] = SDE.interpolate(T, Paths)

[XT, T] = SDE.interpolate(T, Paths, 'Name1', Value1,
'Name2', Value2, ...)

Classes All classes in the SDE class hierarchy.

Description This method performs a Brownian interpolation into a user-specified
time-series array, based on a piecewise-constant Euler sampling
approach.

Consider a vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , )

where:

• X is an NVARS-by-1 state vector.

• F is an NVARS-by-1 drift-rate vector-valued function.

• G is an NVARS-by-NBROWNS diffusion-rate matrix-valued function.

• W is an NBROWNS-by-1 Brownian motion vector.

Given a user-specified time-series array associated with this equation,
this method performs a Brownian (stochastic) interpolation by sampling
from a conditional Gaussian distribution. This sampling technique is
sometimes called a Brownian bridge.

Note Unlike simulation methods, the interpolate method does not
support user-specified noise processes.

15-37



interpolate

Input
Arguments

SDE Stochastic differential equation model.

T NTIMES element vector of interpolation times. The length
of this vector determines the number of rows in the
interpolated output time series XT.

Paths NPERIODS-by-NVARS-by-NTRIALS time-series array of
sample paths of correlated state variables. For a given
trial, each row of this array is the transpose of the state
vector Xt at time t. Paths is the initial time-series
array into which interpolate performs the Brownian
interpolation.

Optional
Input
Arguments

You specify optional input arguments as variable-length lists of
matching parameter name/value pairs: 'Name1', Value1, 'Name2',
Value2, ... and so on. The following rules apply when specifying
parameter-name pairs:

• You specify the parameter name as a character string, followed by its
corresponding parameter value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

• You can specify unambiguous partial string matches.

Valid parameter names are as follows:

15-38



interpolate

Times Vector of monotonically increasing observation times
associated with the time-series input Paths. If you do not
specify a value for this parameter, Times is a zero-based,
unit-increment column vector of length NPERIODS.

Refine Scalar logical flag that indicates whether interpolate
uses the interpolation times you request (see T) to refine
the interpolation as new information becomes available.
If you do not specify a value for this argument or set
it to FALSE (the default value), interpolate bases the
interpolation only on the state information specified in
Paths. If you set Refine to TRUE, interpolate inserts
all new interpolated states into the existing Paths array
as they become available. This refines the interpolation
grid available to subsequent interpolation times for the
duration of the current trial.

Processes Function or cell array of functions that indicates
a sequence of background processes or state vector
adjustments of the form

X P t Xt t= ( , )

The interpolate method runs processing functions at
each interpolation time. They must accept the current
interpolation time t, and the current state vector Xt,
and return a state vector that may be an adjustment to
the input state. If you specify more than one processing
function, interpolate invokes the functions in the order
in which they appear in the cell array. You can use
this argument to specify boundary conditions, prevent
negative prices, accumulate statistics, plot graphs, and
so on.

If you do not specify a processing function, interpolate
makes no adjustments and performs no processing.

15-39



interpolate

Output
Arguments

XT NTIMES-by-NVARS-by-NTRIALS time-series array of
interpolated state variables. For a given trial, each row
of this array is the transpose of the interpolated state
vector Xt at time t. XT is the interpolated time series
formed by interpolating into the input Paths time-series
array.

T NTIMES-by-1 column vector of interpolation times
associated with the output time series XT. If the
input interpolation time vector T contains no missing
observations (NaNs), this output is the same time vector
as T, but with the NaNs removed. This reduces the length
of T and the number of rows of XT.

Remarks • The interpolate method assumes that all model parameters
are piecewise-constant, and evaluates them from the most recent
observation time in Times that precedes a specified interpolation
time in T. This is consistent with the Euler approach of Monte Carlo
simulation.

• When an interpolation time falls outside the interval specified by
Times, an Euler simulation extrapolates the time series by using
the nearest available observation.

• The user-defined time series Paths and corresponding observation
Times must be fully observed (no missing observations denoted by
NaNs).

• The interpolate method assumes that the user-specified time-series
array Paths is associated with the SDE object. For example, the
Times/Paths input pair is the result of an initial course-grained
simulation. However, the interpolation ignores the initial conditions
of the SDE object (StartTime and StartState), allowing the
user-specified Times/Paths input series to take precedence.

15-40



interpolate

Examples Stochastic Interpolation Without Refinement

Many applications require knowledge of the state vector at intermediate
sample times that are initially unavailable. One way to approximate
these intermediate states is to perform a deterministic interpolation.
However, deterministic interpolation techniques fail to capture the
correct probability distribution at these intermediate times. Brownian
(or stochastic) interpolation captures the correct joint distribution by
sampling from a conditional Gaussian distribution. This sampling
technique is sometimes referred to as a Brownian Bridge.

The default stochastic interpolation technique is designed to interpolate
into an existing time series and ignore new interpolated states as
additional information becomes available. This technique is the usual
notion of interpolation, which is called Interpolation without refinement.

Alternatively, the interpolation technique may insert new interpolated
states into the existing time series upon which subsequent interpolation
is based, thereby refining information available at subsequent
interpolation times. This technique is called interpolation with
refinement.

Interpolation without refinement is a more traditional technique,
and is most useful when the input series is closely spaced in time. In
this situation, interpolation without refinement is a good technique
for inferring data in the presence of missing information, but is
inappropriate for extrapolation. Interpolation with refinement is more
suitable when the input series is widely spaced in time, and is useful
for extrapolation.

The stochastic interpolation method is available to any model. It is best
illustrated, however, by way of a constant-parameter Brownian motion
process. Consider a correlated, bivariate Brownian motion (BM) model
of the form:

dX dt dW dW

dX dt dW dW

E dW

t t t

t t t

t

1 1 2

2 1 2

1

0 3 0 2 0 1
0 4 0 1 0 2

= + −
= + −

. . .

. . .
[ ddW dt dtt2 0 5] .= =ρ

15-41



interpolate

1 Create a BM object to represent the bivariate model:

mu = [0.3 ; 0.4];
sigma = [0.2 -0.1 ; 0.1 -0.2];
rho = [ 1 0.5 ; 0.5 1 ];
obj = bm(mu, sigma, 'Correlation', rho);

2 Assuming that the drift (Mu) and diffusion (Sigma) parameters are
annualized, simulate a single Monte Carlo trial of daily observations
for one calendar year (250 trading days):

randn('state', 0)
dt = 1/250; % 1 trading day = 1/250 years
[X,T] = obj.simulate(250, 'DeltaTime', dt);

3 At this point, it is helpful to examine a small interval in detail.

a Interpolate into the simulated time series with a Brownian bridge:

t = ((T(1) + dt/2) : (dt/2) : (T(end) - dt/2));
x = obj.interpolate(t, X, 'Times', T);

b Plot both the simulated and interpolated values:

plot(T, X(:,1), '.-red', T, X(:,2), '.-blue'), ...
grid('on'), hold('on')

plot(t, x(:,1), 'o red', t, x(:,2), 'o blue'), ...
hold('off')

xlabel('Time (Years)'), ylabel('State')
title('Bi-Variate Brownian Motion: \rho = 0.5')
axis([0.4999 0.6001 0.1 0.35])

15-42



interpolate

In this plot:

• The solid red and blue dots indicate the simulated states of the
bivariate model.

• The straight lines that connect the solid dots indicate
intermediate states that would be obtained from a deterministic
linear interpolation.

• Open circles indicate interpolated states.

• Open circles associated with every other interpolated state
encircle solid dots associated with the corresponding simulated
state. However, interpolated states at the midpoint of each time
increment typically deviate from the straight line connecting
each solid dot.

15-43



interpolate

Monte Carlo Simulation of Conditional Gaussian Distributions

You can gain additional insight into the behavior of stochastic
interpolation by regarding a Brownian bridge as a Monte Carlo
simulation of a conditional Gaussian distribution.

This example examines the behavior of a Brownian bridge over a single
time increment.

1 Divide a single time increment of length dt into 10 subintervals:

nTrials = 25000; % # of Trials at each time
n = 125; % index of simulated state near middle
times = (T(n) : (dt/10) : T(n + 1));

2 In each subinterval, take 25000 independent draws from a Gaussian
distribution, conditioned on the simulated states to the left and right:

average = zeros(length(times),1);
variance = zeros(length(times),1);
for i = 1:length(times)

t = times(i);
x = obj.interpolate(t(ones(nTrials,1)), X, 'Times', T);
average(i) = mean(x(:,1));
variance(i) = var(x(:,1));

end

3 Plot the sample mean and variance of each state variable:

Note The following graph plots the sample statistics of the first
state variable only, but similar results hold for any state variable.

subplot(2,1,1), hold('on'), grid('on')
plot([T(n) T(n + 1)], [X(n,1) X(n + 1,1)], '.-b')
plot(times, average, 'or'), hold('off')
title('Brownian Bridge without Refinement: Sample Mean')
ylabel('Mean')

15-44



interpolate

limits = axis; axis([T(n) T(n + 1) limits(3:4)])

subplot(2,1,2), hold('on'), grid('on')
plot(T(n), 0, '.-b', T(n + 1), 0, '.-b')
plot(times, variance, '.-r'), hold('off')
title('Brownian Bridge without Refinement: Sample Variance')
xlabel('Time (Years)'), ylabel('Variance')
limits = axis; axis([T(n) T(n + 1) limits(3:4)])

The Brownian interpolation within the chosen interval, dt, illustrates
the following:

• The conditional mean of each state variable lies on a straight line
segment between the original simulated states at each endpoint.

15-45



interpolate

• The conditional variance of each state variable is a quadratic
function. This function attains its maximum midway between the
interval endpoints, and is zero at each endpoint.

• The maximum variance, although dependent upon the actual
model diffusion-rate function G(t,X), is the variance of the sum of
NBROWNS correlated Gaussian variates scaled by the factor dt/4.

The previous plot highlights interpolation without refinement, in that
none of the interpolated states take into account new information
as it becomes available. If you had performed interpolation with
refinement, new interpolated states would have been inserted into
the time series and made available to subsequent interpolations on
a trial-by-trial basis. In this case, all random draws for any given
interpolation time would be identical. Also, the plot of the sample
mean would exhibit greater variability, but would still be clustered
around the straight line segment between the original simulated
states at each endpoint. The plot of the sample variance, however,
would be zero for all interpolation times, exhibiting no variability.

See Also simulate, sde

15-46



sde

Purpose Create stochastic differential equation models (objects of class SDE)

Syntax SDE = sde(DriftRate, DiffusionRate)

SDE = sde(DriftRate, DiffusionRate, 'Name1', Value1,
'Name2', Value2, ...)

Classes SDE

Description Use this constructor to create and display SDE objects. You can use SDE
objects to simulate sample paths of NVARS state variables driven by
NBROWNS Brownian motion sources of risk over NPERIODS consecutive
observation periods, approximating continuous-time stochastic
processes.

This method enables you to simulate any vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , ) (15-8)

where:

• Xt is an NVARS-by-1 state vector of process variables.

• dWt is an NBROWNS-by-1 Brownian motion vector.

• F is an NVARS-by-1 vector-valued drift-rate function.

• G is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

15-47



sde

Input
Arguments

DriftRate User-defined drift-rate function, denoted by F in
Equation 15-8. DriftRate is a function that returns
an NVARS-by-1 drift-rate vector when called with
two inputs: a real-valued scalar observation time
t and an NVARS-by-1 state vector Xt. Alternatively,
DriftRate may also be an object of class Drift that
encapsulates the drift-rate specification. In this
case, however, sde uses only the Rate parameter of
the object; it uses no other class information.

DiffusionRate User-defined diffusion-rate function, denoted by
G in Equation 15-8. DiffusionRate is a function
that returns an NVARS-by-NBROWNS diffusion-rate
matrix when called with two inputs: a real-valued
scalar observation time t and an NVARS-by-1 state
vector Xt. Alternatively, DiffusionRate may also be
an object of class Diffusion that encapsulates the
diffusion-rate specification. In this case, however,
sde uses only the Rate parameter of the object; it
uses no other class information.

Optional
Input
Arguments

You can specify optional inputs as matching parameter name/value
pairs as follows:

• You specify the parameter name as a character string, followed by
its corresponding value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

• You can specify unambiguous partial string matches.

Valid parameter names are as follows:

15-48



sde

StartTime Scalar starting time of the first observation, applied
to all state variables. If you do not specify a value for
StartTime, the default is 0.

StartState Scalar, NVARS-by-1 column vector, or
NVARS-by-NTRIALS matrix of initial values of
the state variables. If StartState is a scalar, sde
applies the same initial value to all state variables
on all trials.

If StartState is a column vector, sde applies a
unique initial value to each state variable on all
trials.

If StartState is a matrix, sde applies a unique
initial value to each state variable on each trial.

If you do not specify a value for StartState, all
variables start at 1.

Correlation Correlation between Gaussian random variates
drawn to generate the Brownian motion vector
(Wiener processes). You can specify Correlation as
an NBROWNS-by-NBROWNS positive semidefinite matrix,
or as a deterministic function C(t) that accepts the
current time t and returns an NBROWNS-by-NBROWNS
positive semidefinite correlation matrix. A
Correlation matrix represents a static condition.

As a deterministic function of time, Correlation
allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the
default is an NBROWNS-by-NBROWNS identity matrix
representing independent Gaussian processes.

Simulation A user-defined simulation function or SDE
simulation method. If you do not specify a value for
Simulation, the default method is simulation by
Euler approximation (simByEuler).

15-49



sde

Output
Arguments

SDE Object of class sde with the following parameters:

• StartTime: Initial observation time

• StartState: Initial state at time StartTime

• Correlation: Access function for the Correlation
input argument, callable as a function of time

• Drift: Composite drift-rate function, callable as a
function of time and state

• Diffusion: Composite diffusion-rate function, callable
as a function of time and state

• Simulation: A simulation function or method

Remarks When you specify the required input parameters as arrays, they are
associated with a specific parametric form. By contrast, when you
specify either required input parameter as a function, you can customize
virtually any specification.

Accessing the output parameters with no inputs simply returns the
original input specification. Thus, when you invoke these parameters
with no inputs, they behave like simple properties and allow you to test
the data type (double vs. function, or equivalently, static vs. dynamic)
of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like
functions, giving the impression of dynamic behavior. The parameters
accept the observation time t and a state vector Xt, and return an array
of appropriate dimension. Even if you originally specified an input as
an array, sde treats it as a static function of time and state, thereby
guaranteeing that all parameters are accessible by the same interface.

15-50



sde

Examples • “Creating Base SDE Objects” on page 5-14

• Implementing Multidimensional Equity Market Models,
Implementation 1: Using SDE Objects

See Also drift, diffusion

15-51



sdeddo

Purpose Create stochastic differential equation from drift and diffusion models
(objects of class SDEDDO)

Syntax SDE = sdeddo(DriftRate, DiffusionRate)

SDE = sdeddo(DriftRate, DiffusionRate, 'Name1', Value1,
'Name2', Value2, ...)

Classes SDEDDO

Description Use this constructor to create and display SDEDDO objects, specifically
instantiated with objects of class drift and diffusion. These
restricted SDEDDO objects contain the input drift and diffusion
objects; therefore, you can directly access their displayed parameters.

This abstraction also generalizes the notion of drift and diffusion-rate
objects as functions that sdeddo evaluates for specific values of time t
and state Xt. Like SDE objects, SDEDDO objects allow you to simulate
sample paths of NVARS state variables driven by NBROWNS Brownian
motion sources of risk over NPERIODS consecutive observation periods,
approximating continuous-time stochastic processes.

This method enables you to simulate any vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , ) (15-9)

where:

• Xt is an NVARS-by-1 state vector of process variables.

• dWt is an NBROWNS-by-1 Brownian motion vector.

• F is an NVARS-by-1 vector-valued drift-rate function.

• G is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

15-52



sdeddo

Input
Arguments

DriftRate Object of class drift that encapsulates a
user-defined drift-rate specification, represented as
F in Equation 15-9.

DiffusionRate Object of class diffusion that encapsulates a
user-defined diffusion-rate specification, represented
as G in Equation 15-9.

Optional
Input
Arguments

You can specify optional inputs as matching parameter name/value
pairs as follows:

• You specify the parameter name as a character string, followed by
its corresponding value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

• You can specify unambiguous partial string matches.

Valid parameter names are as follows:

StartTime Scalar starting time of the first observation, applied
to all state variables. If you do not specify a value for
StartTime, the default is 0.

StartState Scalar, NVARS-by-1 column vector, or
NVARS-by-NTRIALS matrix of initial values of
the state variables. If StartState is a scalar, sdeddo
applies the same initial value to all state variables
on all trials.

If StartState is a column vector, sdeddo applies
a unique initial value to each state variable on all
trials.

If StartState is a matrix, sdeddo applies a unique
initial value to each state variable on each trial.

15-53



sdeddo

If you do not specify a value for StartState, all
variables start at 1.

Correlation Correlation between Gaussian random variates
drawn to generate the Brownian motion vector
(Wiener processes). You can specify Correlation as
an NBROWNS-by-NBROWNS positive semidefinite matrix,
or as a deterministic function C(t) that accepts the
current time t and returns an NBROWNS-by-NBROWNS
positive semidefinite correlation matrix. A
Correlation matrix represents a static condition.

As a deterministic function of time, Correlation
allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the
default is an NBROWNS-by-NBROWNS identity matrix
representing independent Gaussian processes.

Simulation A user-defined simulation function or SDE
simulation method. If you do not specify a value for
Simulation, the default method is simulation by
Euler approximation (simByEuler).

Output
Arguments

SDE Object of class sdeddo with the following parameters:

• StartTime: Initial observation time

• StartState: Initial state at time StartTime

• Correlation: Access function for the Correlation
input argument, callable as a function of time

• Drift: Composite drift-rate function, callable as a
function of time and state

• Diffusion: Composite diffusion-rate function,
callable as a function of time and state

15-54



sdeddo

• A: Access function for the drift-rate property A, callable
as a function of time and state

• B: Access function for the drift-rate property B ,
callable as a function of time and state

• Alpha: Access function for the diffusion-rate property
Alpha, callable as a function of time and state

• Sigma: Access function for the diffusion-rate property
Sigma, callable as a function of time and state

• Simulation: A simulation function or method

Remarks When you specify the required input parameters as arrays, they are
associated with a specific parametric form. By contrast, when you
specify either required input parameter as a function, you can customize
virtually any specification.

Accessing the output parameters with no inputs simply returns the
original input specification. Thus, when you invoke these parameters
with no inputs, they behave like simple properties and allow you to test
the data type (double vs. function, or equivalently, static vs. dynamic)
of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like
functions, giving the impression of dynamic behavior. The parameters
accept the observation time t and a state vector Xt, and return an array
of appropriate dimension. Even if you originally specified an input as
an array, sdeddo treats as a static function of time and state, thereby
guaranteeing that all parameters are accessible by the same interface.

Examples • “Creating Stochastic Differential Equations from Drift and Diffusion
Objects (SDEDDO)” on page 5-19

• Implementing Multidimensional Equity Market Models,
Implementation 2: Using SDEDDO Objects

15-55



sdeddo

See Also drift, diffusion, sde

15-56



sdeld

Purpose Create stochastic differential equation from linear drift-rate models
(objects of class SDELD)

Syntax SDE = sdeld(A, B, Alpha, Sigma)

SDE = sdeld(A, B, Alpha, Sigma, 'Name1', Value1, 'Name2',
Value2, ...)

Classes SDELD

Description Use this constructor to display SDE objects whose drift rate is expressed
in linear drift-rate form and that derive from the SDEDDO (SDE from
drift and diffusion objects class).

You can use SDELD objects to simulate sample paths of NVARS state
variables expressed in linear drift-rate form. They provide a parametric
alternative to the mean-reverting drift form (see sdemrd).

These state variables are driven by NBROWNS Brownian motion sources
of risk over NPERIODS consecutive observation periods, approximating
continuous-time stochastic processes with linear drift-rate functions.

This method allows you to simulate any vector-valued SDE of the form:

dX A t B t X dt D t X V t dWt t t
t

t= + +( ( ) ( ) ) ( , ) ( )( )α (15-10)

where:

• Xt is an NVARS-by-1 state vector of process variables.

• A is an NVARS-by-1 vector.

• B is an NVARS-by-NVARS matrix.

• D is an NVARS-by-NVARS diagonal matrix, where each element along
the main diagonal is the corresponding element of the state vector
raised to the corresponding power of α.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.

• dWt is an NBROWNS-by-1 Brownian motion vector.

15-57



sdeld

Input
Arguments

You can specify required input parameters as one of the following types:

• A MATLAB® array. Specifying an array indicates a static
(non-time-varying) parametric specification. This array fully
captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support
for virtually any static, dynamic, linear, or nonlinear model. This
parameter is supported via an interface, because all implementation
details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input
parameters as needed.

The required input parameters are as follows:

A A represents the parameter A in Equation 15-10. If
you specify A as an array, it must be an NVARS-by-1
column vector of intercepts. If you specify A as a
function, it must generate an NVARS-by-1 column
vector of intercepts when invoked with two inputs:
a real-valued scalar observation time t and an
NVARS-by-1 state vector Xt.

B B represents the parameter B in Equation 15-10. If
you specify B as an array, it must be anNVARS-by-NVARS
matrix of state vector coefficients. If you specify B as a
function, it must generate an NVARS-by-NVARS matrix
of state vector coefficients when invoked with two
inputs: a real-valued scalar observation time t and an
NVARS-by-1 state vector Xt.

15-58



sdeld

Alpha Alpha determines the format of the parameter D in
Equation 15-10. If you specify Alpha as an array, it
represents an NVARS-by-1 column vector of exponents.
If you specify it as a function, it must return an
NVARS-by-1 column vector of exponents when invoked
with two inputs: a real-valued scalar observation time
t and an NVARS-by-1 state vector Xt.

Sigma Sigma represents the parameter V in Equation
15-10. If you specify Sigma as an array, it represents
is an NVARS-by-NBROWNS 2-dimensional matrix of
instantaneous volatility rates. In this case, each row of
Sigma corresponds to a particular state variable. Each
column of Sigma corresponds to a particular Brownian
source of uncertainty, and associates the magnitude
of the exposure of state variables with sources of
uncertainty. If you specify it as a function, it must
generate an NVARS-by-NBROWNS matrix of volatility
rates when invoked with two inputs: a real-valued
scalar observation time t and an NVARS-by-1 state
vector Xt.

Note Although the constructor does not enforce restrictions on the
signs of Alpha or Sigma, they are usually specified as positive values.

Optional
Input
Arguments

You can specify optional inputs as matching parameter name/value
pairs as follows:

• You specify the parameter name as a character string, followed by
its corresponding value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

• You can specify unambiguous partial string matches.

15-59



sdeld

Valid parameter names are as follows:

StartTime Scalar starting time of the first observation, applied
to all state variables. If you do not specify a value for
StartTime, the default is 0.

StartState Scalar, NVARS-by-1 column vector, or
NVARS-by-NTRIALS matrix of initial values of
the state variables. If StartState is a scalar, sdeld
applies the same initial value to all state variables
on all trials.

If StartState is a column vector, sdeld applies a
unique initial value to each state variable on all
trials.

If StartState is a matrix, sdeld applies a unique
initial value to each state variable on each trial.

If you do not specify a value for StartState, all
variables start at 1.

Correlation Correlation between Gaussian random variates
drawn to generate the Brownian motion vector
(Wiener processes). You can specify Correlation as
an NBROWNS-by-NBROWNS positive semidefinite matrix,
or as a deterministic function C(t) that accepts the
current time t and returns an NBROWNS-by-NBROWNS
positive semidefinite correlation matrix. A
Correlation matrix represents a static condition.

As a deterministic function of time, Correlation
allows you to specify a dynamic correlation structure.

If you do not specify a value for Correlation, the
default is an NBROWNS-by-NBROWNS identity matrix
representing independent Gaussian processes.

Simulation A user-defined simulation function or SDE
simulation method. If you do not specify a value for

15-60



sdeld

Simulation, the default method is simulation by
Euler approximation (simByEuler).

Output
Arguments

SDE Object of class sdeld with the following parameters:

• StartTime: Initial observation time

• StartState: Initial state at time StartTime

• Correlation: Access function for the Correlation
input argument, callable as a function of time

• Drift: Composite drift-rate function, callable as a
function of time and state

• Diffusion: Composite diffusion-rate function, callable
as a function of time and state

• A: Access function for the input argument A, callable as
a function of time and state

• B: Access function for the input argument B, callable as
a function of time and state

• Alpha: Access function for the input argument Alpha,
callable as a function of time and state

• Sigma: Access function for the input argument Sigma,
callable as a function of time and state

• Simulation: A simulation function or method

Remarks When you specify the required input parameters as arrays, they are
associated with a specific parametric form. By contrast, when you
specify either required input parameter as a function, you can customize
virtually any specification.

Accessing the output parameters with no inputs simply returns the
original input specification. Thus, when you invoke these parameters
with no inputs, they behave like simple properties and allow you to test

15-61



sdeld

the data type (double vs. function, or equivalently, static vs. dynamic)
of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like
functions, giving the impression of dynamic behavior. The parameters
accept the observation time t and a state vector Xt, and return an array
of appropriate dimension. Even if you originally specified an input as
an array, sdeld treats it as a static function of time and state, thereby
guaranteeing that all parameters are accessible by the same interface.

Examples • “Creating Stochastic Differential Equations from Linear Drift
(SDELD)” on page 5-20

• Implementing Multidimensional Equity Market Models,
Implementation 3: Using SDELD, CEV, and GBM Objects

See Also drift, diffusion, sdeddo

15-62



sdemrd

Purpose Create stochastic differential equation (SDE) from mean-reverting
drift-rate models (objects of class SDEMRD)

Syntax SDE = sdemrd(Speed, Level, Alpha, Sigma)

SDE = sdemrd(Speed, Level, Alpha, Sigma, 'Name1', Value1,
'Name2', Value2, ...)

Classes SDEMRD

Description Use this class constructor to create and display SDE objects whose drift
rate is expressed in mean-reverting drift-rate form and which derive
from the SDEDDO class (SDE from drift and diffusion objects). You can
use SDEMRD objects to simulate of sample paths of NVARS state variables
expressed in mean-reverting drift-rate form, and provide a parametric
alternative to the linear drift form (see sdeld). These state variables
are driven by NBROWNS Brownian motion sources of risk over NPERIODS
consecutive observation periods, approximating continuous-time
stochastic processes with mean-reverting drift-rate functions.

This method allows you to simulate any vector-valued SDE of the form:

dX S t L t X dt D t X V t dWt t t
t

t= − +( )[ ( ) ] ( , ) ( )( )α (15-11)

where:

• Xt is an NVARS-by-1 state vector of process variables.

• S is an NVARS-by-NVARS matrix of mean reversion speeds.

• L is an NVARS-by-1 vector of mean reversion levels.

• D is an NVARS-by-NVARS diagonal matrix, where each element along
the main diagonal is the corresponding element of the state vector
raised to the corresponding power of α.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.

• dWt is an NBROWNS-by-1 Brownian motion vector.

15-63



sdemrd

Input
Arguments

You can specify required input parameters as one of the following types:

• A MATLAB® array. Specifying an array indicates a static
(non-time-varying) parametric specification. This array fully
captures all implementation details, which are clearly associated
with a parametric form.

• A MATLAB function. Specifying a function provides indirect support
for virtually any static, dynamic, linear, or nonlinear model. This
parameter is supported via an interface, because all implementation
details are hidden and fully encapsulated by the function.

Note You can specify combinations of array and function input
parameters as needed.

The required input parameters are as follows:

Speed Speed represents the parameter S in Equation
15-11. If you specify Speed as an array, it represents
an NVARS-by-NVARS 2-dimensional matrix of
mean-reversion speeds (the rate or speed at which the
state vector reverts to its long-run average Level).
If you specify Speed as a function, Speed calculates
the speed of mean reversion. This function must
generate an NVARS-by-NVARS matrix of reversion rates
when called with two inputs: a real-valued scalar
observation time t and an NVARS-by-1 state vector Xt.

Level Level represents the parameter L in Equation
15-11. If you specify Level as an array, it must be
an NVARS-by-1 column vector of reversion levels. If
you specify Level as a function, it must generate
an NVARS-by-1 column vector of reversion levels
when invoked with two inputs: a real-valued scalar
observation time t and an NVARS-by-1 state vector Xt.

15-64



sdemrd

Alpha Alpha determines the format of the parameter D in
Equation 15-11. If you specify Alpha as an array, it
must be an NVARS-by-1 column vector of exponents.
If you specify it as a function, it must return an
NVARS-by-1 column vector of exponents when invoked
with two inputs: a real-valued scalar observation time
t and an NVARS-by-1 state vector Xt.

Sigma Sigma represents the parameter V in Equation
15-11. If you specify Sigma as an array, it must
be an NVARS-by-NBROWNS 2-dimensional matrix of
instantaneous volatility rates. In this case, each row
of Sigma corresponds to a particular state variable.
Each column of Sigma corresponds to a particular
Brownian source of uncertainty, and associates
the magnitude of the exposure of state variables
with sources of uncertainty. If you specify it as a
function, it must generate an NVARS-by-NBROWNS
matrix of volatility rates when invoked with two
inputs: a real-valued scalar observation time t and an
NVARS-by-1 state vector Xt.

Note Although the constructor does not enforce restrictions on the
signs of any of these input arguments, they are usually specified as
positive values.

Optional
Input
Arguments

You can specify optional inputs as matching parameter name/value
pairs as follows:

• You specify the parameter name as a character string, followed by
its corresponding value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

15-65



sdemrd

• You can specify unambiguous partial string matches.

Valid parameter names are as follows:

StartTime Scalar starting time of the first observation, applied
to all state variables. If you do not specify a value for
StartTime, the default is 0.

StartState Scalar, NVARS-by-1 column vector, or
NVARS-by-NTRIALS matrix of initial values of
the state variables. If StartState is a scalar, sdemrd
applies the same initial value to all state variables
on all trials.

If StartState is a column vector, sdemrd applies
a unique initial value to each state variable on all
trials.

If StartState is a matrix, sdemrd applies a unique
initial value to each state variable on each trial.

If you do not specify a value for StartState, all
variables start at 1.

Correlation Correlation between Gaussian random variates
drawn to generate the Brownian motion vector
(Wiener processes). You can specify Correlation as
an NBROWNS-by-NBROWNS positive semidefinite matrix,
or as a deterministic function C(t) that accepts the
current time t and returns an NBROWNS-by-NBROWNS
positive semidefinite correlation matrix. A
Correlation matrix represents a static condition.

As a deterministic function of time, Correlation
allows you to specify a dynamic correlation structure.

15-66



sdemrd

If you do not specify a value for Correlation, the
default is an NBROWNS-by-NBROWNS identity matrix
representing independent Gaussian processes.

Simulation A user-defined simulation function or SDE
simulation method. If you do not specify a value for
Simulation, the default method is simulation by
Euler approximation (simByEuler).

Output
Arguments

SDE Object of class SDEMRD, with the following parameters:

• StartTime: Initial observation time

• StartState: Initial state at time StartTime

• Correlation: Access function for the Correlation
input argument, callable as a function of time

• Drift: Composite drift-rate function, callable as a
function of time and state

• Diffusion: Composite diffusion-rate function, callable
as a function of time and state

• Speed: Access function for the input argument Speed,
callable as a function of time and state

• Level: Access function for the input argument Level,
callable as a function of time and state

• Alpha: Access function for the input argument Alpha,
callable as a function of time and state

• Sigma: Access function for the input argument Sigma,
callable as a function of time and state

• Simulation: A simulation function or method

15-67



sdemrd

Remarks When you specify the required input parameters as arrays, they are
associated with a specific parametric form. By contrast, when you
specify either required input parameter as a function, you can customize
virtually any specification.

Accessing the output parameters with no inputs simply returns the
original input specification. Thus, when you invoke these parameters
with no inputs, they behave like simple properties and allow you to test
the data type (double vs. function, or equivalently, static vs. dynamic)
of the original input specification. This is useful for validating and
designing methods.

When you invoke these parameters with inputs, they behave like
functions, giving the impression of dynamic behavior. The parameters
accept the observation time t and a state vector Xt, and return an array
of appropriate dimension. Even if you originally specified an input as
an array, sdemrd treats it as a static function of time and state, thereby
guaranteeing that all parameters are accessible by the same interface.

Examples See “Creating Stochastic Differential Equations from Mean-Reverting
Drift (SDEMRD)” on page 5-24.

See Also drift, diffusion, sdeddo

15-68



simByEuler

Purpose Perform Euler simulation of stochastic differential equations (SDEs)

Syntax [Paths, Times, Z] = SDE.simByEuler(NPERIODS)

[Paths, Times, Z] = SDE.simByEuler(NPERIODS, 'Name1',
Value1, 'Name2', Value2, ...)

Classes All classes in the SDE class hierarchy.

Description This method simulates any vector-valued SDE of the form

dX F t X dt G t X dWt t t t= +( , ) ( , )
where:

• X is an NVARS-by-1 state vector of process variables (for example,
short rates or equity prices) to simulate.

• W is an NBROWNS-by-1 Brownian motion vector.

• F is an NVARS-by-1 vector-valued drift-rate function.

• G is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

simByEuler simulates NTRIALS sample paths of NVARS correlated state
variables driven by NBROWNS Brownian motion sources of risk over
NPERIODS consecutive observation periods, using the Euler approach to
approximate continuous-time stochastic processes.

Input
Arguments

SDE Stochastic differential equation object created with the
sdeddo class constructor.

NPERIODS Positive scalar integer number of simulation periods.
The value of NPERIODS determines the number of rows
of the simulated output series.

15-69



simByEuler

Optional
Input
Arguments

You can specify optional inputs as matching parameter name/value
pairs as follows:

• You specify the parameter name as a character string, followed by
its corresponding value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

• You can specify unambiguous partial string matches.

Valid parameter names are as follows:

NTRIALS Positive scalar integer number of simulated trials
(sample paths) of NPERIODS observations each. If you
do not specify a value for this argument, the default is
1, indicating a single path of correlated state variables.

DeltaTime Scalar or NPERIODS-by-1 column vector of positive
time increments between observations. DeltaTime
represents the familiar dt found in stochastic
differential equations, and determines the times at
which the simulated paths of the output state variables
are reported. If you do not specify a value for this
argument, the default is 1.

NSTEPS Positive scalar integer number of intermediate time
steps within each time increment dt (specified as
DeltaTime). The simByEuler method partitions each
time increment dt into NSTEPS subintervals of length
dt/NSTEPS, and refines the simulation by evaluating
the simulated state vector at NSTEPS - 1 intermediate
points. Although simByEuler does not report the
output state vector at these intermediate points,
the refinement improves accuracy by allowing the
simulation to more closely approximate the underlying
continuous-time process. If you do not specify a value

15-70



simByEuler

for NSTEPS, the default is 1, indicating no intermediate
evaluation.

Antithetic Scalar logical flag that indicates whether simByEuler
uses antithetic sampling to generate the Gaussian
random variates that drive the Brownian motion
vector (Wiener processes). When Antithetic is TRUE
(logical 1), simByEuler performs sampling such that
all primary and antithetic paths are simulated and
stored in successive matching pairs:

• Odd trials (1,3,5,...) correspond to the primary
Gaussian paths.

• Even trials (2,4,6,...) are the matching
antithetic paths of each pair derived by negating
the Gaussian draws of the corresponding primary
(odd) trial.

If you specify Antithetic to be any value other than
TRUE, simByEuler assumes that it is FALSE (logical 0)
by default, and does not perform antithetic sampling.
When you specify an input noise process (see Z),
simByEuler ignores the value of Antithetic.

Z Direct specification of the dependent random noise
process used to generate the Brownian motion vector
(Wiener process) that drives the simulation. You can
specify this argument as a function, or as an (NPERIODS
* NSTEPS)-by-NBROWNS-by-NTRIALS 3-dimensional
array of dependent random variates. If you specify
Z as a function, it must return an NBROWNS-by-1
column vector, and you must call it with two inputs: a
real-valued scalar observation time t and an NVARS-by-1
state vector Xt. If you do not specify a value for Z,
simByEuler generates correlated Gaussian variates
based on the Correlation member of the SDE object.

15-71



simByEuler

StorePaths Scalar logical flag that indicates how the output
array Paths is stored and returned to the caller.
If StorePaths is TRUE (the default value) or
is unspecified, simByEuler returns Paths as a
3-dimensional time-series array. If StorePaths is
FALSE (logical 0), simByEuler returns the Paths output
array as an empty matrix.

Processes Function or cell array of functions that indicates a
sequence of end-of-period processes or state vector
adjustments of the form

X P t Xt t= ( , )

simByEuler applies processing functions at the end of
each observation period. These functions must accept
the current observation time t and the current state
vector Xt, and return a state vector that may be an
adjustment to the input state. If you specify more
than one processing function, simByEuler invokes the
functions in the order in which they appear in the cell
array. You can use this argument to specify boundary
conditions, prevent negative prices, accumulate
statistics, plot graphs, and more.

If you do not specify a processing function, simByEuler
makes no adjustments and performs no processing.

15-72



simByEuler

Output
Arguments

Paths (NPERIODS + 1)-by-NVARS-by-NTRIALS 3-dimensional
time-series array, consisting of simulated paths of
correlated state variables. For a given trial, each row of
Paths is the transpose of the state vector Xt at time t.
When the input flag StorePaths = FALSE, simByEuler
returns Paths as an empty matrix.

Times (NPERIODS + 1)-by-1 column vector of observation
times associated with the simulated paths. Each
element of Times is associated with the corresponding
row of Paths.

Z (NPERIODS * NSTEPS)-by-NBROWNS-by-NTRIALS
3-dimensional time-series array of dependent random
variates used to generate the Brownian motion vector
(Wiener processes) that drive the simulation.

Remarks • This simulation engine provides a discrete-time approximation of the
underlying generalized continuous-time process. The simulation is
derived directly from the stochastic differential equation of motion.
Thus, the discrete-time process approaches the true continuous-time
process only as DeltaTime approaches zero.

• The input argument Z allows you to directly specify the
noise-generation process. This process takes precedence over the
Correlation parameter of the SDE object and the value of the
Antithetic input flag. If you do not specify a value for Z, simByEuler
generates correlated Gaussian variates, with or without antithetic
sampling as requested.

• The end-of-period Processes argument allows you to terminate a
given trial early. At the end of each time step, simByEuler tests the
state vector Xt for an all-NaN condition. Thus, to signal an early
termination of a given trial, all elements of the state vector Xt must
be NaN. This test enables a user-defined Processes function to signal
early termination of a trial, and offers significant performance

15-73



simByEuler

benefits in some situations (for example, pricing down-and-out
barrier options).

Examples Implementing Multidimensional Equity Market Models,
Implementation 5: Using the simByEuler Method

See Also simBySolution, simulate

15-74



simBySolution

Purpose Simulate approximate solution of diagonal-drift HWV and GBM processes

Syntax [Paths, Times, Z] = OBJ.simBySolution(NPERIODS)

[Paths, Times, Z] = OBJ.simBySolution(NPERIODS, 'Name1',
Value1,'Name2', Value2, ...)

Classes • GBM

• HWV

Description The simBySolution method simulates NTRIALS sample paths of NVARS
correlated state variables, driven by NBROWNS Brownian motion sources
of risk over NPERIODS consecutive observation periods, approximating
continuous-time Hull-White/Vasicek (HWV) and geometric Brownian
motion (GBM) short-rate models by an approximation of the closed-form
solution.

Consider a separable, vector-valued HWV model of the form:

dX S t L t X dt V t dWt t t= − +( )[ ( ) ] ( ) (15-12)

where:

• X is an NVARS-by-1 state vector of process variables.

• S is an NVARS-by-NVARS matrix of mean reversion speeds (the
rate of mean reversion).

• L is an NVARS-by-1 vector of mean reversion levels (long-run mean
or level).

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.

• W is an NBROWNS-by-1 Brownian motion vector.

or a separable, vector-valued GBM model of the form:

15-75



simBySolution

dX t X dt D t X V t dWt t t t= +μ( ) ( , ) ( ) (15-13)

where:

• Xt is an NVARS-by-1 state vector of process variables.

• μ is an NVARS-by-NVARS generalized expected instantaneous rate of
return matrix.

• V is an NVARS-by-NBROWNS instantaneous volatility rate matrix.

• dWt is an NBROWNS-by-1 Brownian motion vector.

The simBySolution method simulates the state vector Xt using an
approximation of the closed-form solution of diagonal-drift models.

When evaluating the expressions, simBySolution assumes that all
model parameters are piecewise-constant over each simulation period.

In general, this is not the exact solution to the models in Equation
5-12 and Equation 15-13, because the probability distributions
of the simulated and true state vectors are identical only for
piecewise-constant parameters.

When parameters are piecewise-constant over each observation period,
the simulated process is exact for the observation times at which Xt
is sampled.

Input
Arguments

OBJ Hull-White/Vasicek (HWV) or geometric Brownian motion
(GBM) model.

NPERIODS Positive scalar integer number of simulation periods.
The value of this argument determines the number of
rows of the simulated output series.

Optional
Input
Arguments

You specify optional input arguments as variable-length lists of
matching parameter name/value pairs: 'Name1', Value1, 'Name2',
Value2, ... and so on. The following rules apply when specifying
parameter-name pairs:

15-76



simBySolution

• You specify the parameter name as a character string, followed by its
corresponding parameter value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

• You can specify unambiguous partial string matches.

Valid parameter names are as follows:

NTRIALS Positive scalar integer number of simulated trials
(sample paths) of NPERIODS observations each. If you
do not specify a value for this argument, the default is
1, indicating a single path of correlated state variables.

DeltaTime Scalar or NPERIODS-by-1 column vector of positive
time increments between observations. DeltaTime
represents the familiar dt found in stochastic
differential equations, and determines the times at
which simBySolution reports the simulated paths of
the output state variables. If you do not specify a value
for this argument, the default is 1.

NSTEPS Positive scalar integer number of intermediate time
steps within each time increment dt (specified as
DeltaTime). simBySolution partitions each time
increment dt into NSTEPS subintervals of length
dt/NSTEPS, and refines the simulation by evaluating
the simulated state vector at NSTEPS - 1 intermediate
points. Although simBySolution does not report
the output state vector at these intermediate points,
the refinement improves accuracy by allowing the
simulation to more closely approximate the underlying
continuous-time process. If you do not specify a value
for NSTEPS, the default is 1, indicating no intermediate
evaluation.

15-77



simBySolution

Antithetic Scalar logical flag that indicates whether antithetic
sampling is used to generate the Gaussian random
variates that drive the Brownian motion vector
(Wiener processes). When Antithetic is TRUE (logical
1), simBySolution performs sampling such that all
primary and antithetic paths are simulated and stored
in successive matching pairs:

• Odd trials (1,3,5,...) correspond to the primary
Gaussian paths

• Even trials (2,4,6,...) are the matching
antithetic paths of each pair derived by negating
the Gaussian draws of the corresponding primary
(odd) trial.

If you specify Antithetic to be any value other
than TRUE,simBySolution assumes that it is FALSE
(logical 0) by default, and does not perform antithetic
sampling. When you specify an input noise process (see
Z), simBySolution ignores the value of Antithetic.

Z Direct specification of the dependent random noise
process used to generate the Brownian motion vector
(Wiener process) that drives the simulation. You can
specify this argument as a function, or as an (NPERIODS
* NSTEPS)-by-NBROWNS-by-NTRIALS array of dependent
random variates. If you specify Z as a function, it
must return an NBROWNS-by-1 column vector, and you
must call it with two inputs: a real-valued scalar
observation time t and an NVARS-by-1 state vector Xt.
If you do not specify a value for Z, simBySolution
generates correlated Gaussian variates based on the
Correlation member of the SDE object.

15-78



simBySolution

StorePaths Scalar logical flag that indicates how simBySolution
stores the output array Paths and returns it to the
caller. If StorePaths is TRUE(the default value) or
is unspecified, simBySolution returns Paths as a
3-dimensional time-series array. If StorePaths is
FALSE (logical 0), simBySolution returns the Paths
output array as an empty matrix.

Processes Function or cell array of functions that indicates a
sequence of end-of-period processes or state vector
adjustments of the form

X P t Xt t= ( , )

simBySolution applies processing functions at the
end of each observation period. These functions must
accept the current observation time t and the current
state vector Xt, and return a state vector that may
be an adjustment to the input state. If you specify
more than one processing function, simBySolution
invokes the functions in the order in which they
appear in the cell array. You can use this argument to
specify boundary conditions, prevent negative prices,
accumulate statistics, plot graphs, and more.

If you do not specify a processing function,
simBySolution makes no adjustments and performs
no processing.

15-79



simBySolution

Output
Arguments

Paths (NPERIODS + 1)-by-NVARS-by-NTRIALS 3-dimensional
time-series array, consisting of simulated paths of
correlated state variables. For a given trial, each
row of Paths is the transpose of the state vector Xt
at time t. When the input flag StorePaths = FALSE,
simBySolution returns Paths as an empty matrix.

Times (NPERIODS + 1)-by-1 column vector of observation
times associated with the simulated paths. Each
element of Times is associated with the corresponding
row of Paths.

Z (NPERIODS * NSTEPS)-by-NBROWNS-by-NTRIALS
3-dimensional time-series array of dependent random
variates used to generate the Brownian motion vector
(Wiener processes) that drive the simulation.

Remarks • The input argument Z allows you to directly specify the noise
generation process. This process takes precedence over the
Correlation parameter of the SDE object and the value of the
Antithetic input flag. If you do not specify a value for Z,
simBySolution generates correlated Gaussian variates, with or
without antithetic sampling as requested.

• Gaussian diffusion models, such as HWV, allow negative states. By
default, simBySolution does nothing to prevent negative states, nor
does it guarantee that the model be strictly mean-reverting. Thus,
the model may exhibit erratic or explosive growth.

• The end-of-period Processes argument allows you to terminate
a given trial early. At the end of each time step, simBySolution
tests the state vector Xt for an all-NaN condition. Thus, to signal an
early termination of a given trial, all elements of the state vector Xt
must be NaN. This test enables a user-defined Processes function to
signal early termination of a trial, and offers significant performance
benefits in some situations (for example, pricing down-and-out
barrier options).

15-80



simBySolution

Examples Implementing Multidimensional Equity Market Models,
Implementation 6: Using GBM Simulation Methods

See Also simByEuler, simulate

15-81



simulate

Purpose Simulate multivariate stochastic differential equations (SDEs)

Syntax [Paths, Times, Z] = SDE.simulate(...)

Classes All classes in the SDE class hierarchy

Description This method simulates any vector-valued SDE of the form:

dX F t X dt G t X dWt t t t= +( , ) ( , ) (15-14)

where:

• X is an NVARS-by-1 state vector of process variables (for example,
short rates or equity prices) to simulate.

• W is an NBROWNS-by-1 Brownian motion vector.

• F is an NVARS-by-1 vector-valued drift-rate function.

• G is an NVARS-by-NBROWNS matrix-valued diffusion-rate function.

[Paths, Times, Z] = SDE.simulate(...) simulates NTRIALS sample
paths of NVARS correlated state variables, driven by NBROWNS Brownian
motion sources of risk over NPERIODS consecutive observation periods,
approximating continuous-time stochastic processes.

Input
Arguments

SDE Stochastic differential equation model.

Optional
Input
Arguments

The simulate method accepts any variable-length list of input
arguments that the simulation method or function referenced by the
SDE.Simulation parameter requires or accepts. It passes this input
list directly to the appropriate SDE simulation method or user-defined
simulation function.

15-82



simulate

Output
Arguments

Paths (NPERIODS + 1)-by-NVARS-by-NTRIALS 3-dimensional
time-series array, consisting of simulated paths of
correlated state variables. For a given trial, each row of
Paths is the transpose of the state vector Xt at time t.

Times (NPERIODS + 1)-by-1 column vector of observation times
associated with the simulated paths. Each element of
Times is associated with a corresponding row of Paths.

Z NTIMES-by-NBROWNS-by-NTRIALS 3-dimensional
time-series array of dependent random variates used to
generate the Brownian motion vector (Wiener processes)
that drove the simulated results found in Paths. NTIMES
is the number of time steps at which simulate samples
the state vector. NTIMES includes intermediate times
designed to improve accuracy, which simulate does not
necessarily report in the Paths output time series.

Examples Antithetic Sampling

Simulation methods allow you to specify a popular variance reduction
technique called antithetic sampling. This technique attempts to
replace one sequence of random observations with another of the same
expected value, but smaller variance.

In a typical Monte Carlo simulation, each sample path is independent
and represents an independent trial. However, antithetic sampling
generates sample paths in pairs. The first path of the pair is referred to
as the primary path, and the second as the antithetic path. Any given
pair is independent of any other pair, but the two paths within each pair
are highly correlated. Antithetic sampling literature often recommends
averaging the discounted payoffs of each pair, effectively halving the
number of Monte Carlo trials.

This technique attempts to reduce variance by inducing negative
dependence between paired input samples, ideally resulting in negative
dependence between paired output samples. The greater the extent of
negative dependence, the more effective antithetic sampling is.

15-83



simulate

This example applies antithetic sampling to a path-dependent barrier
option. Consider a European up-and-in call option on a single
underlying stock. The evolution of this stock’s price is governed by a
Geometric Brownian Motion (GBM) model with constant parameters:

dX X dt X dWt t t t= +0 05 0 3. .

Assume the following characteristics:

• The stock currently trades at 105.

• The stock pays no dividends.

• The stock volatility is 30% per annum.

• The option strike price is 100.

• The option expires in 3 months.

• The option barrier is 120.

• The risk-free rate is constant at 5% per annum.

The goal is to simulate various paths of daily stock prices, and calculate
the price of the barrier option as the risk-neutral sample average of the
discounted terminal option payoff. Since this is a barrier option, you
must also determine if and when the barrier is crossed.

This example performs antithetic sampling by explicitly setting the
Antithetic flag to true, and then specifies an end-of-period processing
function to record the maximum and terminal stock prices on a
path-by-path basis.

1 Create a GBM model:

barrier = 120; % barrier
strike = 100; % exercise price
rate = 0.05; % annualized risk-free rate
sigma = 0.3; % annualized volatility
nPeriods = 63; % 63 trading days
dt = 1 / 252; % time increment = 252 days

15-84



simulate

T = nPeriods * dt; % expiration time = 0.25 years
obj = gbm(rate, sigma, 'StartState', 105);

2 Perform a very small-scale simulation that explicitly returns two
simulated paths:

randn('state', 10)
[X, T] = obj.simBySolution(nPeriods, 'DeltaTime', dt, ...

'nTrials', 2, 'Antithetic', true);

3 Perform antithetic sampling such that all primary and antithetic
paths are simulated and stored in successive matching pairs. Odd
paths (1,3,5,...) correspond to the primary Gaussian paths. Even
paths (2,4,6,...) are the matching antithetic paths of each pair,
derived by negating the Gaussian draws of the corresponding
primary (odd) path.

Verify this by examining the matching paths of the primary/antithetic
pair:

plot(T, X(:,:,1), 'blue', T, X(:,:,2), 'red')
xlabel('Time (Years)'), ylabel('Stock Price'), ...

title('Antithetic Sampling')
legend({'Primary Path' 'Antithetic Path'}, ...

'Location', 'Best')

15-85



simulate

To price the European barrier option, specify an end-of-period processing
function to record the maximum and terminal stock prices. This
processing function is accessible by time and state, and is implemented
as a nested function with access to shared information that allows the
option price and corresponding standard error to be calculated.

1 Simulate 200 paths using the processing function method:

randn('state', 10)
nPaths = 200; % # of paths = 100 sets of pairs
f = barrierExample(nPeriods, nPaths)
obj.simBySolution(nPeriods, 'DeltaTime' , dt, ...

'nTrials', nPaths, 'Antithetic', true, ...
'Processes', f.SaveMaxLast);

15-86



simulate

2 Approximate the option price with a 95% confidence interval:

optionPrice = f.OptionPrice (strike, rate, barrier);
standardError = f.StandardError(strike, rate, barrier, ...

true);
lowerBound = optionPrice - 1.96 * standardError;
upperBound = optionPrice + 1.96 * standardError;

fprintf(' Up-and-In Barrier Option Price: %8.4f\n', ...
optionPrice)

fprintf(' Standard Error of Price: %8.4f\n', ...
standardError)

fprintf(' Confidence Interval Lower Bound: %8.4f\n', ...
lowerBound)

fprintf(' Confidence Interval Upper Bound: %8.4f\n', ...
upperBound)

Up-and-In Barrier Option Price: 7.4549
Standard Error of Price: 0.6763
Confidence Interval Lower Bound: 6.1294
Confidence Interval Upper Bound: 8.7805

See Also simByEuler, simBySolution

15-87



ts2func

Purpose Convert time-series arrays to callable functions of time and state

Syntax F = ts2func(Array)

F = ts2func(Array, 'Name1', Value1, 'Name2', Value2, ...)

Description The ts2func function encapsulates a time-series array associated with
a vector of real-valued observation times within a MATLAB® function
suitable for Monte Carlo simulation of an NVARS-by-1 state vector Xt.

Input
Arguments

Array Time-series array to encapsulate within a callable function
of time and state. Array may be a vector, 2-dimensional
matrix, or 3-dimensional array.

Optional
Input
Arguments

You specify optional input arguments as variable-length lists of
matching parameter name/value pairs: 'Name1', Value1, 'Name2',
Value2, ... and so on. The following rules apply when specifying
parameter-name pairs:

• You specify the parameter name as a character string, followed by its
corresponding parameter value.

• You can specify parameter name/value pairs in any order.

• Parameter names are case insensitive.

• You can specify unambiguous partial string matches.

Valid parameter names are as follows:

15-88



ts2func

Times Vector of monotonically increasing observation
times associated with the time-series input array
Array. If you do not specify a value for this
argument, Times is a zero-based, unit-increment
vector of the same length as that of the dimension
of Array associated with time (see TimeDimension).

TimeDimension Positive scalar integer that specifies which
dimension of the input time-series array Array is
associated with time. The value of this argument
cannot be greater than the number of dimensions
of Array. If you do not specify a value for this
argument, the default is 1, indicating that time is
associated with the rows of Array.

StateDimension Positive scalar integer that specifies which
dimension of the input time-series array Array
is associated with the NVARS state variables.
StateDimension cannot be greater than the
number of dimensions of Array. If you do not
specify a value for this argument, ts2func assigns
StateDimension the first dimension of Array that
is not already associated with time (the state vector
Xt is associated with the first available dimension
of Array not already assigned to TimeDimension).

Output
Arguments

F Callable function F(t) of a real-valued scalar observation
time t. You can invoke F with a second input (such as an
NVARS-by-1 state vector X), which is a placeholder that
ts2func ignores. For example, while F(t) and F(t,X)
produce identical results, the latter directly supports
SDE simulation methods.

Remarks • When you specify Array as a trivial scalar or a vector (row or column),
ts2func assumes that it represents a univariate time series.

15-89



ts2func

• F returns an array with one fewer dimension than the input
time-series array Array with which F is associated. Thus, when
Array is a vector, a 2-dimensional matrix, or a 3-dimensional array, F
returns a scalar, vector, or 2-dimensional matrix, respectively.

• When the scalar time t at which ts2func evaluates the function F
does not coincide with an observation time in Times, F performs a
zero-order-hold interpolation. The only exception is if t precedes the
first element of Times, in which case F(t) = F(Times(1)).

• To support Monte Carlo simulation methods, the output function F
returns an NVARS-by-1 column vector or a 2-dimensional matrix with
NVARS rows.

See Also simByEuler, simulate

15-90



A

Bibliography

[1] Ait-Sahalia, Y., “Testing Continuous-Time Models of the Spot Interest
Rate”, The Review of Financial Studies, Spring 1996, Vol. 9, No. 2, pp.
385-426.

[2] Ait-Sahalia, Y., “Transition Densities for Interest Rate and Other
Nonlinear Diffusions”. The Journal of Finance, Vol. LIV, No. 4, August 1999.

[3] Baillie, R.T., and T. Bollerslev, “Prediction in Dynamic Models with
Time-Dependent Conditional Variances,” Journal of GARCH, Vol. 52, 1992,
pp. 91–113.

[4] Bera, A.K., and H.L. Higgins, “A Survey of ARCH Models: Properties,
Estimation and Testing,” Journal of Economic Surveys, Vol. 7, No. 4, 1993.

[5] Bollerslev, T., “A Conditionally Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return,” Review of Economics and Statistics,
Vol. 69, 1987, pp. 542–547.

[6] Bollerslev, T., “Generalized Autoregressive Conditional Heteroskedasticity,”
Journal of GARCH, Vol. 31, 1986, pp. 307–327.

[7] Bollerslev, T., R.Y. Chou, and K.F. Kroner, “ARCH Modeling in Finance: A
Review of the Theory and Empirical Evidence,” Journal of GARCH, Vol. 52,
1992, pp. 5–59.

[8] Bollerslev, T., R.F. Engle, and D.B. Nelson, “ARCH Models,” Handbook
of GARCH, Volume IV, Chapter 49, pp. 2959–3038, Elsevier Science B.V.,
Amsterdam, The Netherlands, 1994.



A Bibliography

[9] Bollerslev, T., and E. Ghysels, “Periodic Autoregressive Conditional
Heteroscedasticity,” Journal of Business and Economic Statistics, Vol. 14,
1996, pp. 139–151.

[10] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel, Time Series Analysis:
Forecasting and Control, Third edition, Prentice Hall, Upper Saddle River,
NJ, 1994.

[11] Brooks, C., S.P. Burke, and G. Persand, “Benchmarks and the Accuracy
of GARCH Model Estimation,” International Journal of Forecasting, Vol. 17,
2001, pp. 45–56.

[12] Campbell, J.Y., A.W. Lo, and A.C. MacKinlay, “The GARCH of Financial
Markets,” Nonlinearities in Financial Data, Chapter 12, Princeton University
Press, Princeton, NJ, 1997.

[13] Enders, W., Applied Econometric Time Series, John Wiley & Sons, New
York, 1995.

[14] Engle, Robert F., “Autoregressive Conditional Heteroskedasticity with
Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol.
50, 1982, pp. 987–1007.

[15] Engle, Robert F., D.M. Lilien, and R.P. Robins, “Estimating Time Varying
Risk Premia in the Term Structure: The ARCH-M Model,” Econometrica,
Vol. 59, 1987, pp. 391–407.

[16] Glasserman, P., Monte Carlo Methods in Financial Engineering,
Springer-Verlag, 2004.

[17] Glosten, L.R., R. Jagannathan, and D.E. Runkle, “On the Relation
between Expected Value and the Volatility of the Nominal Excess Return on
Stocks,” The Journal of Finance, Vol. 48, 1993, pp. 1779–1801.

[18] Gourieroux, C., ARCH Models and Financial Applications,
Springer-Verlag, 1997.

[19] Greene, W.H., Econometric Analysis, Fifth edition, Prentice Hall, Upper
Saddle River, NJ, 2003.

A-2



Bibliography

[20] Hagerud, G.E., “Modeling Nordic Stock Returns with Asymmetric
GARCH,” Working Paper Series in Economics and Finance, No. 164,
Department of Finance, Stockholm School of Economics, 1997.

[21] Hagerud, G.E., “Specification Tests for Asymmetric GARCH,” Working
Paper Series in Economics and Finance, No. 163, Department of Finance,
Stockholm School of Economics, 1997.

[22] Hamilton, J.D., Time Series Analysis, Princeton University Press,
Princeton, NJ, 1994.

[23] Hentschel, L., “All in the Family: Nesting Symmetric and Asymmetric
GARCH Models,” Journal of Financial Economics, Vol. 39, 1995, pp. 71–104.

[24] Hull, J.C., Options, Futures, and Other Derivatives, 5th Edition, Prentice
Hall 2002.

[25] Johnson, N.L., S. Kotz, and N. Balakrishnan, Continuous Univariate
Distributions, Vol. 2, Second edition, John Wiley & Sons, New York, 1995.

[26] Longstaff, F.A., Schwartz, E.S., “Valuing American Options by
Simulation: A Simple Least-Squares Approach”, The Review of Financial
Studies, Spring 2001, Vol. 14, No. 1, pp. 113–147.

[27] McCullough, B.D., and C.G. Renfro, “Benchmarks and Software
Standards: A Case Study of GARCH Procedures,” Journal of Economic and
Social Measurement, Vol. 25, 1998, pp. 59–71.

[28] Nelson, D.B., “Conditional Heteroskedasticity in Asset Returns: A New
Approach,” Econometrica, Vol. 59, 1991, pp. 347–370.

[29] Peters, J.P., “Estimating and Forecasting Volatility of Stock Indices
Using Asymmetric GARCH Models and Skewed Student-t Densities,” working
paper, École d’Administration des Affaires, University of Liège, Belgium,
March 20, 2001.

[30] Shreve, S.E., Stochastic Calculus for Finance II: Continuous-Time
Models, Springer-Verlag, 2004.

A-3



A Bibliography

A-4



B

Examples

Use this list to find examples in the documentation.



B Examples

Introduction
“Example: Analysis and Estimation Using the Default Model” on page 2-16
“Example: Interpreting Specification Structures” on page 3-6

Simulation
“Simulating Single Paths” on page 4-3
“Simulating Multiple Paths” on page 4-5
“Specifying a Scalar Response Tolerance” on page 4-8

Simulating Univariate Brownian Motion Models
“Example: Creating Base SDE Models” on page 5-14
“Example: Creating Drift and Diffusion Rate Objects as Model Inputs”
on page 5-17
“Example: Creating SDEDDO Models” on page 5-19
“Example: Creating SDELD Models” on page 5-20
“Example: Creating BM Models” on page 5-21
“Example: Creating Univariate CEV Models” on page 5-22
“Example: Creating Univariate GBM Models” on page 5-24
“Example: Creating SDEMRD Models” on page 5-25
“Example: Creating CIR Models” on page 5-26
“Example: Creating HWV Models” on page 5-27

Monte Carlo Simulation of Stochastic Differential Equations
“Implementing Multidimensional Equity Market Models” on page 5-29
“Stochastic Interpolation and the Brownian Bridge” on page 5-42
“Inducing Dependence and Correlation” on page 5-48
“Incorporating Dynamic Behavior” on page 5-51
“Ensuring Positive State Variables” on page 5-57
“Black-Scholes Option Pricing” on page 5-60

B-2



Estimation

“User-Specified Random Number Generation: Stratified Sampling” on
page 5-63
“Example: Improving SDE Solution Accuracy by Increasing Sampling of
the Discrete-Time Process” on page 5-76
“Stochastic Interpolation Without Refinement” on page 15-41
“Monte Carlo Simulation of Conditional Gaussian Distributions” on page
15-44
“Antithetic Sampling” on page 15-83

Estimation
“Specifying Presample Data” on page 6-21
“Presample Data and Transient Effects” on page 6-24
“Alternative Technique for Estimating ARMA(R,M) Parameters” on page
6-30
“Active Lower Bound Constraint” on page 6-30
“Determining Convergence Status” on page 6-34

Forecasting
“Forecasting Using garchpred” on page 7-9
“Volatility Forecasting over Multiple Periods” on page 7-12
“Forecasting with Multiple Realizations” on page 7-15

Regression
“Fitting a Model to a Simulated Return Series” on page 8-3
“Fitting a Regression Model to the Same Return Series” on page 8-5
“Ordinary Least Squares Regression” on page 8-11

B-3



B Examples

Unit Root Tests
“Testing GDP by OLS Regression with a Stationary Component” on page
9-14
“Testing T-Bill Rate by OLS Regression with a Drift Component” on page
9-17

Model Selection and Analysis
“Likelihood Ratio Tests” on page 10-3
“Akaike and Bayesian Information Criteria” on page 10-6
“Equality Constraints and Parameter Significance” on page 10-9
“Equality Constraints and Initial Parameter Estimates” on page 10-14
“Examples: Simplicity and Parsimony” on page 10-17

Example Workflow: Estimation, Forecasting, and Monte
Carlo Simulation

“Estimating the Model” on page 11-3
“Forecasting” on page 11-5
“Forecasting Using Monte Carlo Simulation” on page 11-7
“Comparing Forecasts with Simulation Results” on page 11-9

B-4



Glossary

Glossary

Akaike information criteria (AIC)
A model-order selection criterion based on parsimony. More complicated
models are penalized for the inclusion of additional parameters. See
also Bayesian information criteria (BIC).

antithetic sampling
A variance reduction technique that pairs a sequence of independent
normal random numbers with a second sequence obtained by negating
the random numbers of the first. The first sequence simulates
increments of one path of Brownian motion, and the second sequence
simulates increments of its reflected, or antithetic, path. These two
paths form an antithetic pair independent of any other pair.

AR
Autoregressive. AR models include past observations of the dependent
variable in the forecast of future observations.

ARCH
Autoregressive Conditional Heteroscedasticity. A time-series technique
that uses past observations of the variance to forecast future variances.
See also GARCH.

ARMA
Autoregressive Moving Average. A time-series model that includes both
AR and MA components. See also AR and MA.

autocorrelation function (ACF)
Correlation sequence of a random time series with itself. See also
cross-correlation function (XCF).

autoregressive
See AR.

Bayesian information criteria (BIC)
A model-order selection criterion based on parsimony. More complicated
models are penalized for the inclusion of additional parameters. Since
BIC imposes a greater penalty for additional parameters than AIC, BIC

Glossary-1



Glossary

always provides a model with a number of parameters no greater than
that chosen by AIC. See also Akaike information criteria (AIC).

Brownian motion
A zero-mean continuous-time stochastic process with independent
increments (also known as a Wiener process).

conditional
Time-series technique with explicit dependence on the past sequence
of observations.

conditional mean
Time-series model for forecasting the expected value of the return series
itself.

conditional variance
Time-series model for forecasting the expected value of the variance
of the return series.

cross-correlation function (XCF)
Correlation sequence between two random time series. See also
autocorrelation function (ACF).

diffusion
The function that characterizes the random (stochastic) portion of a
stochastic differential equation. See also stochastic differential
equation.

discretization error
Errors that may arise due to discrete-time sampling of continuous
stochastic processes.

drift
The function that characterizes the deterministic portion of a stochastic
differential equation. See also stochastic differential equation.

equality constraint
A constraint, imposed during parameter estimation, by which a
parameter is held fixed at a user-specified value.

Glossary-2



Glossary

Euler approximation
A simulation technique that provides a discrete-time approximation of a
continuous-time stochastic process.

excess kurtosis
A characteristic, relative to a standard normal probability distribution,
in which an area under the probability density function is reallocated
from the center of the distribution to the tails (fat tails). Samples
obtained from distributions with excess kurtosis have a higher
probability of containing outliers than samples drawn from a normal
(Gaussian) density. Time series that exhibit a fat tail distribution are
often referred to as leptokurtic.

explanatory variables
Time series used to explain the behavior of another observed series
of interest. Explanatory variables are typically incorporated into a
regression framework.

fat tails
See excess kurtosis.

GARCH
Generalized autoregressive conditional heteroscedasticity. A time-series
technique that uses past observations of the variance and variance
forecast to forecast future variances. See also ARCH.

heteroscedasticity
Time-varying, or time-dependent, variance.

homoscedasticity
Time-independent variance. The GARCH Toolbox™ software also refers
to homoscedasticity as constant conditional variance.

i.i.d.
Independent, identically distributed.

innovations
A sequence of unanticipated shocks, or disturbances. The GARCH
Toolbox™ software uses innovations and residuals interchangeably.

Glossary-3



Glossary

leptokurtic
See excess kurtosis.

MA
Moving average. MA models include past observations of the
innovations noise process in the forecast of future observations of the
dependent variable of interest.

MMSE
Minimum mean square error. A technique designed to minimize the
variance of the estimation or forecast error. See also RMSE.

moving average
See MA.

objective function
The function to numerically optimize. In the GARCH Toolbox™
software, the objective function is the log-likelihood function of a
random process.

partial autocorrelation function (PACF)
Correlation sequence estimated by fitting successive order
autoregressive models to a random time series by least squares. The
PACF is useful for identifying the order of an autoregressive model.

path
A random trial of a time-series process.

proportional sampling
A stratified sampling technique that ensures that the proportion of
random draws matches its theoretical probability. One of the most
common examples of proportional sampling involves stratifying the
terminal value of a price process in which each sample path is associated
with a single stratified terminal value such that the number of paths
equals the number of strata.

See also stratified sampling.

p-value
The lowest level of significance at which a test statistic is significant.

Glossary-4



Glossary

realization
See path.

residuals
See innovations.

RMSE
Root mean square error. The square root of the mean square error. See
also MMSE.

standardized innovations
The innovations divided by the corresponding conditional standard
deviation.

stochastic differential equation
A generalization of an ordinary differential equation, with the addition
of a noise process, that yields random variables as solutions.

strata
See stratified sampling.

stratified sampling
A variance reduction technique that constrains a proportion of sample
paths to specific subsets (or strata) of the sample space.

time series
Discrete-time sequence of observations of a random process. The type of
time series of interest in the GARCH Toolbox™ software is typically a
series of returns, or relative changes of some underlying price series.

transient
A response, or behavior, of a time series that is heavily dependent on
the initial conditions chosen to begin a recursive calculation. The
transient response is typically undesirable, and initially masks the true
steady-state behavior of the process of interest.

trial
The result of an independent random experiment that computes the
average or expected value of a variable of interest and its associated
confidence interval.

Glossary-5



Glossary

unconditional
Time-series technique in which explicit dependence on the past sequence
of observations is ignored. Equivalently, the time stamp associated with
any observation is ignored.

variance reduction
A sampling technique in which a given sequence of random variables is
replaced with another of the same expected value but smaller variance.
Variance reduction techniques increase the efficiency of Monte Carlo
simulation.

volatility
The risk, or uncertainty, measure associated with a financial time
series. The GARCH Toolbox™ software associates volatility with
standard deviation.

Wiener process
See Brownian motion.

Glossary-6



Index

IndexA
ACF 13-7
AIC

model selection 10-6
aicbic 13-2
Akaike information criteria

model selection 10-6
analysis example

using default model 2-16
AR model

converting from ARMA model 13-28
ARCH/GARCH effects

hypothesis test 13-4
archtest 13-4
ARMA model

converting to AR model 13-28
converting to MA model 13-54

array size 1-7
arrays

time series 1-7
asymptotic behavior

for long-range forecast horizons 7-7
long-range forecasts 7-7

autocorr 13-7
autocorrelation function 13-7
autoregressive model

converting from ARMA model 13-28

B
Bayesian information criteria

model selection 10-6
BIC

model selection 10-6
bm 15-2

C
cev 15-7
cir 15-13

compounding
continuous and periodic 1-8

conditional mean models 2-9
regression components 8-2 9-2

conditional standard deviations
inferred from return series 13-48
of forecast errors 13-61
simulating 13-76

conditional variance models 2-10
conditional variances

constant 8-11
constraints

active lower bound example 6-30
equality 10-9
fixing model parameters 10-9
tolerance limits 6-18

conventions
technical 1-7

convergence
avoiding problems 2-16
determining status 6-34
showing little progress 2-16
suboptimal solution 2-16
tolerance options 6-16

cross-correlation function 13-12
crosscorr 13-12

D
data sets 1-12

Deutschmark/British Pound FX price
series 1-12

NASDAQ Composite Index 1-13
New York Stock Exchange Composite

Index 1-13
default

GARCH model 2-13
default model

estimation and analysis example 2-16
estimation example 2-16

Index-1



Index

Deutschmark/British Pound FX price series 1-12
dfARDTest 13-16
dfARTest 13-20
dfTSTest 13-24
diffusion 15-19
distributions

supported 2-5
drift 15-23

E
EGARCH(P,Q) conditional variance model 2-11
Engle’s hypothesis test 13-4
equality constraints

initial parameter estimates 10-14
parameter significance 10-9

estimation 6-1
advanced example 11-3
control of optimization process 6-15
convergence 6-16
convergence to suboptimal solution 2-16
count of coefficients 13-32
incorporating a regression model 8-3
initial parameter estimates 6-4
maximum likelihood 6-2
number of function evaluations 6-15
number of iterations 6-15
of GARCH process 13-35
optimization results 6-17
parameter bounds 6-10
plotting results 13-58
premature termination 2-16
presample observations 6-12
summary information 13-39
termination criteria 6-15
tolerance options 6-16

estimation example
estimating model parameters 2-24
post-estimation analysis 2-27
pre-estimation analysis 2-16

using default model 2-16

F
fat tails 2-2
filtering 13-85
financial time series

characteristics 2-2
modeling 2-2

fixing model constraints 10-9
forecast errors

conditional standard deviations 13-61
forecast results

compare to simulation results 11-9
forecasted explanatory data 8-9
forecasting 7-1

advanced example 11-5
asymptotic behavior for long-range 7-7
basic example 7-9
conditional mean of returns 7-3
conditional standard deviations of

innovations 7-2
minimum mean square error 7-2
multiperiod volatility example 7-12
multiple realizations example 7-15
plotting results 13-58
presample data 7-6
RMSE of mean forecast 7-4
using a regression model 8-9
volatility of returns 7-3

function evaluation count
maximum 6-15

functions
aicbic 13-2
archtest 13-4
autocorr 13-7
converting from time series 15-88
crosscorr 13-12
dfARDtest 13-16
dfARtest 13-20

Index-2



Index

dfTStest 13-24
example showing relationships 11-1
garchar 13-28
garchcount 13-32
garchdisp 13-33
garchfit 13-35
garchget 13-46
garchinfer 13-48
garchlot 13-58
garchma 13-54
garchpred 13-61
garchset 13-68
garchsim 13-76
hpfilter 13-85
lagmatrix 13-88
lbqtest 13-91
listed by category 12-1
lratiotest 13-94
parcorr 13-97
ppARDTest 13-102
ppARTest 13-105
ppTSTest 13-108
price2ret 13-112
primary engines 2-14
ret2price 13-116

G
GARCH

brief description 1-3
limitations 1-4
uses for 1-3

GARCH process
forecasting 13-61
inferring innovations 13-48
parameter estimation 13-35

count of coefficients 13-32
displaying results 13-33

simulation 13-76
GARCH specification structure

contents
interpreting 3-6

creating and modifying parameters 3-9
definition of fields 13-69
retrieving parameters 13-46

GARCH Toolbox
conventions and clarifications

compounding 1-8
primary functions 2-14

GARCH(P,Q) conditional variance model 2-10
garchar 13-28
garchcount 13-32
garchdisp 13-33
garchfit 13-35
garchget 13-46
garchinfer 13-48
garchma 13-54
garchplot 13-58
garchpred 13-61
garchset 13-68
garchsim 13-76
gbm 15-26
GJR(P,Q) conditional variance model 2-11

H
Hodrick-Prescott filter 13-85
hpfilter 13-85
hwv 15-31
hypothesis tests

likelihood ratio 13-94
Ljung-Box lack-of-fit 13-91

I
inference

conditional standard deviations 13-48
GARCH innovations 13-48
transient effects example 6-24
using a regression model 8-8

Index-3



Index

initial parameter estimates 6-4
conditional mean models with regression 6-7
conditional mean models without

regression 6-6
conditional variance models 6-7
equality constraints 10-14

innovations
distribution 2-5
forecasting conditional standard

deviations 7-2
inferred from return series 13-48
serial dependence 2-5
simulating 13-76

interpolate 15-37
iteration count

maximum 6-15

L
lack-of-fit hypothesis test 13-91
lagged time-series matrix 13-88
lagmatrix 13-88
lbqtest 13-91
length

vector 1-7
leverage effects 2-2
likelihood ratio hypothesis test 13-94
likelihood ratio tests

model selection 10-3
Ljung-Box lack-of-fit hypothesis test 13-91
log-likelihood functions 6-2

optimized value parameters 13-35
long-range forecasting

asymptotic behavior 7-7
lratiotest 13-94

M
MA model

converting from ARMA model 13-54

maximum likelihood
estimation 6-2

methods
listed by category 14-1

minimum mean square error
forecasting 7-2

MMSE
forecasting 7-2

model parameters
complete specification 10-14
empty fix fields 10-15
equality constraints 10-9
estimating 2-24
fixing 10-9
parsimony 10-17

model selection and analysis 10-1
AIC and BIC 10-6
correlation in return series 2-19
correlation in squared returns 2-21
Engle’s ARCH test 2-24
likelihood ratio tests 10-3
Ljung-Box-Pierce Q-test 2-23

modeling
financial time series 2-2

models
complete specification 10-14
conditional mean and variance 2-7
GARCH default 2-13

Monte Carlo simulation 8-13
advanced example 11-7
compare to forecast results 11-9

moving average model
converting from ARMA model 13-54

N
NASDAQ Composite Index 1-13
New York Stock Exchange Composite Index 1-13
non-stationary time series 1-9
NYSE Composite Index 1-13

Index-4



Index

O
ordinary least squares regression 8-11

P
PACF 13-97
parameter estimates

bounds 6-10
displaying results 13-33
equality constraints 10-14
initial 6-4

automatically generated 6-6
user-specified 6-4

parameter estimation
plotting results 13-58
univariate GARCH process 13-35

parcorr 13-97
parsimonious parameterization 10-17
partial autocorrelation function 13-97
plotting

autocorrelation function 13-7
cross-correlation function 13-12
forecasted results 13-58
parameter estimation results 13-58
partial autocorrelation function 13-97
simulation results 13-58

ppARDTest 13-102
ppARTest 13-105
ppTSTest 13-108
precision 1-8
presample data

estimation
automatically generated 6-13
deriving from actual data 6-30
example 6-21
user-specified 6-12

forecasting 7-6
simulation

automatically generated 4-7
user-specified 4-13

price series
converting from return series 13-116
converting to return series 13-112

price2ret 13-112

R
regression

in Monte Carlo framework 8-13
regression components

conditional mean models 8-2 9-2
estimation 8-3
forecasting 8-9
inference 8-8
simulation 8-8

response tolerance
for simulated data 4-8

ret2price 13-116
return series

converting from price series 13-112
converting to price series 13-116
forecasting conditional mean 7-3
forecasting RMSE of mean forecast 7-4
forecasting volatility 7-3
simulating 13-76

S
sde 15-47
SDE class constructors

bm 15-2
cev 15-7
cir 15-13
diffusion 15-19
drift 15-23
gbm 15-26
hwv 15-31
sde 15-47
sdeddo 15-52
sdeld 15-57

Index-5



Index

sdemrd 15-63
SDE simulation methods

interpolate 15-37
simByEuler 15-69
simBySolution 15-75
simulate 15-82

sdeddo 15-52
sdeld 15-57
sdemrd 15-63
SDEs

about 5-2
class hierarchy 5-11
creating user-specified functions 5-69
improving performance 5-73
managing memory consumption 5-72
objects

behavior 5-5
relationship to models 5-5
syntax 5-5

optimizing solution accuracy 5-74
parametric specification 5-7
popular models 5-9
solving problems with SDE models 5-29

Black-Sholes option pricing 5-60
ensuring positive state processes 5-57
implementing multidimensional market

models 5-29
incorporating dynamic behavior 5-51
inducing dependence and

correlation 5-48
stochastic interpolation and the

brownian bridge 5-42
user-specified random number

generation: stratified sampling 5-63
terminology 5-3

using objects to create models 5-11
creating base SDE objects 5-14
creating brownian motion (BM)

models 5-21
creating constant elasticity of variance

(CEV) models 5-22
creating Cox-Ingersoll-Ross (CIR) square

root diffusion models 5-25
creating drift and diffusion objects 5-16
creating geometric brownian motion

(GBM) models 5-23
creating Hull-White/Vasicek (HWV)

gaussian diffusion models 5-26
creating SDEs from drift and diffusion

objects (SDEDDO) 5-19
creating SDEs from linear drift

(SDELD) 5-20
creating SDEs from mean-reverting drift

(SDEMRD) 5-24
shifted time-series matrix 13-88
simByEuler 15-69
simBySolution 15-75
simulate 15-82
simulation 4-1

compare to forecast results 11-9
plotting results 13-58
presample data 4-7
response tolerance 4-8
sample paths 4-2
storage considerations 4-10
univariate GARCH processes 13-76
using a regression model 8-8
using ordinary least squares regression 8-11

size
array and vector 1-7

specification structure
contents

interpreting 3-6
creating and modifying parameters 3-9
definition of fields 13-69

Index-6



Index

fixing model parameters 10-9
retrieving parameters 13-46

stationary time series 1-9
Stochastic Differential Equations. See SDEs

T
termination criteria

estimation 6-15
time series

characteristics of financial 2-2
converting to functions 15-88
correlation of observations 2-5
cyclical component 13-85
modeling financial 2-2
stationary and non-stationary 1-9
stationary, non-stationary 1-9
trend component 13-85

time-series matrix 1-7
lagged or shifted 13-88

tolerance options 6-16
constraint violation 6-18

effect on convergence 6-17
effect on optimization results 6-17

transients
automatic minimization 4-7
in presample simulation data 4-7
inference example 6-24
minimization techniques 4-11
simulation process 4-7

ts2func 15-88

V
vector length 1-7
vector size 1-7
volatility

forecasting 7-3
forecasting example 7-12

volatility clustering 2-2

X
XCF 13-12

Index-7


	toc
	Getting Started
	Product Overview
	What Is GARCH?
	About GARCH
	Modeling with GARCH
	Limitations of GARCH Modeling

	Expected Background
	Technical Conventions
	Array and Vector Size
	Vector Length
	Time-Series Arrays
	Conditional vs. Unconditional
	Precision
	Prices, Returns, and Compounding
	Stationary and Non-stationary Time Series

	Example Financial Time-Series Data Sets
	About the Examples in this Documentation
	DEM2GBP
	NASDAQ
	NYSE
	SDE_Data


	Introduction
	About Financial Time Series Modeling
	Characteristics of Financial Time Series
	Forecasting and Correlation of Financial Time Series
	Serial Dependence in Innovations

	Conditional Mean and Variance Models
	About Conditional Mean and Variance Models
	Conditional Mean Models
	Conditional Variance Models
	GARCH(P,Q) Conditional Variance
	GJR(P,Q) Conditional Variance
	EGARCH(P,Q) Conditional Variance


	The Default Model
	Primary Toolbox Functions
	Example: Analysis and Estimation Using the Default Model
	Pre-Estimation Analysis
	About This Example
	Loading the Price Series Data
	Converting the Prices to a Return Series
	Checking for Correlation in the Return Series
	Checking for Correlation in the Squared Returns
	Quantifying the Correlation

	Parameter Estimation
	Post-Estimation Analysis
	Comparing the Residuals, Conditional Standard Deviations, and Re
	Comparing Correlation of the Standardized Innovations
	Quantifying and Comparing Correlation of the Standardized Innova



	GARCH Specification Structures
	Introduction
	Associating Model Equation Variables with Corresponding Paramete
	About Specification Structure Parameter Names
	Conditional Mean Model
	Conditional Variance Models

	Example: Interpreting Specification Structures
	Working with Specification Structures
	Creating Specification Structures
	For the Default Model
	For ARMA(0,0)/GJR(1,1)
	For AR(2)/GARCH(1,2) with Initial Parameter Estimates

	Modifying Specification Structures
	Retrieving Specification Structure Values


	Simulation of GARCH Models
	Simulating Single and Multiple Paths
	Introduction
	Preparing the Example Data
	Simulating Single Paths
	Simulating Multiple Paths

	Working with Presample Data
	About Presample Data
	Automatically Generating Presample Data
	Automatically Minimizing Transient Effects
	Specifying a Scalar Response Tolerance
	Storage Considerations
	Other Ways to Minimize Transient Effects

	Running Simulations With User-Specified Presample Data


	Monte Carlo Simulation of Stochastic Differential Equations
	Introduction
	Terminology
	Trials vs. Paths
	NTRIALS, NPERIODS, and NSTEPS

	Behavior and Syntax of SDE Objects
	Relationship Between SDE Models and Objects
	Displaying Objects
	Assigning and Referencing Object Parameters
	Constructing and Evaluating Models

	Parametric Specification
	General Parametric Specification
	General SDEs
	Drift and Diffusion Specifications

	Using SDE Objects to Create Models
	SDE Classes
	The SDE Class Hierarchy
	SDE Methods
	SDE Class Constructors

	Creating Base SDE Objects
	About Base SDE Models
	Example: Creating Base SDE Models
	Specifying Object Parameters and Simulation Inputs

	Creating Drift and Diffusion Objects
	About Drift and Diffusion Objects
	Example: Creating Drift and Diffusion Rate Objects as Model Inpu

	Creating Stochastic Differential Equations from Drift and Diffus
	About SDEDDO Models
	Example: Creating SDEDDO Models

	Creating Stochastic Differential Equations from Linear Drift (SD
	About SDELD Models
	Example: Creating SDELD Models

	Creating Brownian Motion (BM) Models
	About BM Models
	Example: Creating BM Models

	Creating Constant Elasticity of Variance (CEV) Models
	About CEV Models
	Example: Creating Univariate CEV Models

	Creating Geometric Brownian Motion (GBM) Models
	About GBM Models
	Example: Creating Univariate GBM Models

	Creating Stochastic Differential Equations from Mean-Reverting D
	About SDEMRD Models
	Example: Creating SDEMRD Models

	Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models
	About CIR Models
	Example: Creating CIR Models

	Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models
	About HWV Models
	Example: Creating HWV Models
	Hull-White vs. Vasicek Models


	Solving Problems with SDE Models
	Implementing Multidimensional Equity Market Models
	Implementation 1: Using SDE Objects
	Implementation 2: Using SDEDDO Objects
	Implementation 3: Using SDELD, CEV, and GBM Objects
	Implementation 4: Using the Default Simulate Method
	Implementation 5: Using the SimByEuler Method
	Implementation 6: Using GBM Simulation Methods

	Stochastic Interpolation and the Brownian Bridge
	Inducing Dependence and Correlation
	Incorporating Dynamic Behavior
	End-of-Period Processes
	Ensuring Positive State Variables
	Black-Scholes Option Pricing

	User-Specified Random Number Generation: Stratified Sampling

	Creating User-Specified Functions
	Evaluating Object Parameters, Noise, and End-of-Period Processin
	Random Number Generation Functions vs. End-of-Period Processing 

	Managing Memory, Performance, and Solution Accuracy
	Managing Memory
	Enhancing Performance
	Optimizing Accuracy of Solutions
	About Precision and Error
	Example: Improving SDE Solution Accuracy by Increasing Sampling 



	Estimation
	Maximum Likelihood Estimation
	Initial Parameter Estimates
	User-Specified Initial Estimates
	Automatically Generated Initial Estimates
	Conditional Mean Models Without a Regression Component
	Conditional Mean Models with a Regression Component
	Conditional Variance Models

	Parameter Bounds
	Conditional Mean Model
	GARCH(P,Q) and GJR(P,Q) Conditional Variance Models
	EGARCH(P,Q) Conditional Variance Model


	Presample Observations
	Calculating Presample Data
	User-Specified Presample Observations
	Automatically Generated Presample Observations
	Conditional Mean Models
	GARCH(P,Q) Models
	GJR(P,Q) Models
	EGARCH(P,Q) Models


	Termination Criteria and Optimization Results
	Optimization Parameters
	MaxIter and MaxFunEvals
	TolCon, TolFun, and TolX
	Convergence
	Optimization Results
	Constraint Violation Tolerance
	Strict Inequality Constraints
	Single Parameter Strict Inequality Constraints
	Relaxing Constraint Tolerance Limits


	Examples: Specifying Your Own Presample Data to Estimate ARMA(R,
	Specifying Presample Data
	Presample Data and Transient Effects
	Alternative Technique for Estimating ARMA(R,M) Parameters
	Default Method
	Alternative Technique

	Active Lower Bound Constraint
	Determining Convergence Status


	Forecasting the Conditional Mean and Standard Deviation of Retur
	Minimum Mean Square Error Forecasting
	About the Forecasting Engine
	Conditional Standard Deviations of Future Innovations
	Conditional Mean Forecasting of the Return Series
	MMSE Volatility Forecasting of Returns
	RMSE Associated with Conditional Mean Forecasts

	Generating Presample Observations
	Asymptotic Behavior for Long-Range Forecast Horizons
	Examples: Computing Forecasts
	Forecasting Using garchpred
	Volatility Forecasting over Multiple Periods
	Forecasting with Multiple Realizations


	Regression Components
	Introduction
	Example: Incorporating a Regression Model into an Estimation
	Fitting a Model to a Simulated Return Series
	Fitting a Regression Model to the Same Return Series

	Simulation and Inference Using a Regression Component
	Forecasting Using a Regression Component
	Using Forecasted Explanatory Data
	Forecasting Only the Conditional Standard Deviation
	Forecasting the Conditional Mean

	Generating Forecasted Explanatory Data

	Ordinary Least Squares Regression
	Regression in a Monte Carlo Framework

	Univariate Unit Root Tests
	Introduction
	Critical Values
	Serial Dependence

	Dickey-Fuller Tests
	Definitions of Operators
	dfARTest
	dfARDTest
	dfTSTest

	Phillips-Perron Tests
	Definitions of Operators
	ppARTest
	ppARDTest
	ppTSTest

	How to Test for Unit Roots: Inputs and Outputs
	About the Common Interface
	Lags
	Significance Level
	TestType
	AR and t Tests
	F Tests

	Outputs

	Interpretation of Results
	Examples: Unit Root Tests
	About These Examples
	Testing GDP by OLS Regression with a Stationary Component
	Testing T-Bill Rate by OLS Regression with a Drift Component


	Model Selection and Analysis
	Using The Autocorrelation and Partial Autocorrelation Functions
	Likelihood Ratio Tests
	Testing Support for a GARCH(2,1) Model

	Akaike and Bayesian Information Criteria
	Equality Constraints and Parameter Significance
	Specification Structure Fix Fields
	Comparing the GARCH (1, 1) Estimation Results with the GARCH (2,

	Equality Constraints and Initial Parameter Estimates
	About this Example
	Complete Model Specification
	Empty Fix Fields
	Limiting Use of Equality Constraints

	Examples: Simplicity and Parsimony

	Example Workflow: Estimation, Forecasting, and Simulation
	Estimating the Model
	Forecasting
	Forecasting Using Monte Carlo Simulation
	Comparing Forecasts with Simulation Results

	Function Reference
	Data Preprocessing
	GARCH Specification Structure
	GARCH Modeling
	General Utilities
	Graphics
	Statistics and Tests

	Functions — Alphabetical List
	Method Reference
	Monte Carlo Simulation of Stochastic Differential Equations (SDE
	Stochastic Differential Equation (SDE) Class Constructors

	Methods — Alphabetical List
	Bibliography
	Examples
	Introduction
	Simulation
	Simulating Univariate Brownian Motion Models
	Monte Carlo Simulation of Stochastic Differential Equations
	Estimation
	Forecasting
	Regression
	Unit Root Tests
	Model Selection and Analysis
	Example Workflow: Estimation, Forecasting, and Monte Carlo Simul

	Glossary
	Index

	tables
	Popular Models
	SDE Classes


